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Lecture 1

I motivation

I divergence of perturbation theory in QM

I basics of Borel summation

I the Bogomolny/Zinn-Justin cancellation mechanism



Motivation

Resurgence: • ‘new’ idea in mathematics
• goal: explore implications for physics

I unification of perturbation theory and non-perturbative
physics

I applications to QM, QFT, Strings, . . .

I consistent non-perturbative definition of asymptotically free
QFT

I insight into localization

I analytic continuation of path integrals

I exponentially improved (‘exact’) semi-classical analysis



Perturbation theory

• perturbation theory generally produces a divergent
series

• semiclassical (WKB) expansions are generally divergent

• there is a lot of interesting physics encoded in these facts

• perturbation theory has nontrivial ‘hidden’ structure

• perturbation theory and non-perturbative physics are
intricately entwined

• “resurgence” describes these inter-relations

• general mathematical approach to instanton calculus



Perturbation theory generally produces a divergent series

Divergent series are the invention of the devil, and it is
shameful to base on them any demonstration
whatsoever ... That most of these things [summation of
divergent series] are correct, in spite of that, is
extraordinarily surprising. I am trying to find a reason
for this; it is an exceedingly interesting question.

N. Abel, 1802 – 1829

The series is divergent; therefore we may be able to do
something with it

O. Heaviside, 1850 – 1925



Perturbation theory works

QED perturbation theory:
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The left-hand panel shows a collection of different measurements by S. Bethke from High-

Energy International Conference in Quantum Chromodynamics, Montpellier 2002 (hep-

ex/0211012). The right-hand panel shows a collection by P. Zerwas, Eur. Phys. J. 

C34(2004)41. JADE was one of the experiments at PETRA at DESY. NNLO means Next-to-

Next-to-Leading Order computation in QCD. 

 

Although there are limits to the kind of calculations that can be performed to compare QCD 

with experiments, there is still overwhelming evidence that it is the correct theory. Very 

ingenious ways have been devised to test it and the data obtained, above all at the CERN LEP 

accelerator, are bounteous. Wherever it can be checked, the agreement is better than 1%, often 

much better, and the discrepancy is wholly due to the incomplete way in which the 

calculations can be made. 

 

The Standard Model for Particle Physics 

 

QCD complemented the electro-weak theory in a natural way. This theory already contained 

the quarks and it was natural to put all three interactions together into one model, a non-

abelian gauge field theory with the gauge group SU(3) x SU(2) x U(1). This model has been 

called ‘The Standard Model for Particle Physics’. The theory explained the SLAC 

experiments and also contained a possible explanation why quarks could not be seen as free 

particles (quark confinement). The force between quarks grows with distance because of 

‘infrared slavery’, and it is easy to believe that they are permanently bound together. There 

are many indications in the theory that this is indeed the case, but no definite mathematical 

proof has so far been advanced. 

 

The Standard Model is also the natural starting point for more general theories that unify the 

three different interactions into a model with one gauge group. Through spontaneous 

symmetry breaking of some of the symmetries, the Standard Model can then emerge. Such 
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Resurgence

resurgence = unification of perturbation theory and
non-perturbative physics

• cures inconsistencies in perturbative OR non-perturbative
analyses

• series expansion −→ trans-series expansion

• trans-series well-defined under analytic continuation of
parameter

• philosophical shift:
view semiclassical expansions as potentially exact

• applications: ODEs, PDEs, QM, QFT, String Theory, ...



Resurgent Trans-Series

• trans-series expansion:

f(g2) =

∞∑

n=0

∞∑

k=0

k−1∑

l=0

an,k,l g
2n

[
exp

(
− S
g2

)]k [
log

(
− 1

g2

)]l

• J. Écalle (1980): set of functions with these trans-monomial
elements is closed under:

(Borel transform)+(analytic continuation)+(Laplace transform)

• “any reasonable function” has a trans-series expansion

• differential equations, iterated maps, ...

• trans-series expansion coefficients are highly correlated

• exponentially improved asymptotic expansions



Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slightly different guise, as it were - at
their singularities

J. Écalle, 1980

n

m



Divergence of perturbation theory in quantum mechanics

e.g. ground state energy:

E =

∞∑

n=0

cn (coupling)n

I cubic oscillator: cn ∼ − (60)n+1/2

(2π)3/2 Γ(n+ 1
2)

I quartic oscillator: cn ∼ (−1)n+1 3n
√

6
π3/2 Γ(n+ 1

2)

I Zeeman: cn ∼ (−1)n
(

4
π

)5/2 1
π2n

(
2n+ 1

2

)
!

I Stark: cn ∼ − 4
π

(
3
2

)2n+1
(2n)!

I periodic Sine-Gordon potential: cn ∼ n!

I double-well: cn ∼ 3n n!

note generic factorial growth of perturbative coefficients



Asymptotic Series vs Convergent Series

f(x) =

N−1∑

n=0

cn (x− x0)n +RN (x)

convergent series:

|RN (x)| → 0 , N →∞ , x fixed

asymptotic series:

|RN (x)| � |x− x0|N , x→ x0 , N fixed

−→ “optimal truncation”:

truncate just before least term (x dependent!)



Asymptotic Series vs Convergent Series

∞∑
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Asymptotic Series vs Convergent Series

∞∑

n=0

n!xn ∼ 1
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Asymptotic Series vs Convergent Series

∞∑

n=0

(−1)n n!xn ∼ 1

x
e

1
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optimal truncation: error term is exponentially small
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Divergence of perturbation theory in quantum mechanics

typical large order growth:

cn ∼ (±1)n βn Γ(γ n+ δ)

Related to factorial growth of number of Feynman
diagrams

J =
1√
2π

∫ +∞

−∞
e−

1
2x

2− g
4x

4

dx =

∞∑

n=0

Jn g
n

⇒ Jn ∼ (−1)n
(n− 1)!

4n



Borel summation: basic idea

example: exponential integral function
(http://dlmf.nist.gov/6.2)

∞∑

n=0

(−1)n n! gn =
1

g
e

1
g E1

(
1

g

)

write n! =
∫∞

0 dt e−t tn

∞∑

n=0

(−1)n n! gn =

∫ ∞

0
dt e−t

1

1 + g t
=

1

g

∫ ∞

0
dt e−t/g

1

1 + t

integral convergent for all g > 0: “Borel sum” of the series

http://dlmf.nist.gov/6.2


Borel Summation: basic idea

∞∑

n=0

(−1)n n!xn =
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0
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Borel summation: basic idea

example: non-alternating series:

∞∑

n=0

n! gn =
1

g
e
− 1
g Ei

(
1

g

)

write n! =
∫∞

0 dt e−t tn

∞∑

n=0

n! gn =

∫ ∞

0
dt e−t

1

1− g t =
1

g

∫ ∞

0
dt e−t/g

1

1− t ???

pole on the Borel axis!

⇒ non-perturbative imaginary part

± i π
g
e
− 1
g



Borel Summation: Basic Idea

Borel ⇒ Re
[ ∞∑

n=0

n!xn

]
= P
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Borel summation

Borel transform of series f(g) ∼∑∞n=0 cn g
n:

B[f ](t) =

∞∑

n=0

cn
n!
tn

new series typically has finite radius of convergence.

Borel resummation of original asymptotic series:

Sf(g) =
1

g

∫ ∞

0
B[f ](t)e−t/gdt

warning: B[f ](t) may have singularities in (Borel) t plane



Borel singularities

avoid singularities on R+: lateral Borel sums:

Sθf(g) =
1

g

∫ eiθ∞

0
B[f ](t)e−t/gdt

C+

C-

go above/below the singularity: θ = 0±

−→ non-perturbative ambiguity: ±Im[S0f(g)]

challenge: use physical input to resolve ambiguity



Divergence of perturbation theory in quantum mechanics

e.g. ground state energy:

E =

∞∑

n=0

cn (coupling)n

I cubic oscillator: cn ∼ − (60)n+1/2

(2π)3/2 Γ(n+ 1
2)

I quartic oscillator: cn ∼ (−1)n+1 3n
√

6
π3/2 Γ(n+ 1

2)

I Zeeman: cn ∼ (−1)n
(

4
π

)5/2 1
π2n

(
2n+ 1

2

)
!

I Stark: cn ∼ − 4
π

(
3
2

)2n+1
(2n)!

I periodic Sine-Gordon potential: cn ∼ n!

I double-well: cn ∼ 3n n!

note generic factorial growth of perturbative coefficients



Borel Summation and Dispersion Relations

z= h
2

. z o

C

R

E(z0) =
1

2πi

∮

C
dz

E(z)

z − z0

=
1

π

∫ R

0
dz

ImE(z)

z − z0

=

∞∑

n=0

zn0

(
1

π

∫ R

0
dz

ImE(z)

zn+1

)

WKB ⇒ ImE(z) ∼ a√
z
e−b/z , z → 0

⇒ cn ∼
a

π

∫ ∞

0
dz

e−b/z

zn+3/2
=
a

π

Γ(n+ 1
2)

bn+1/2



Divergence of perturbation theory

an important part of the story ...

The majority of nontrivial theories are seemingly
unstable at some phase of the coupling constant, which
leads to the asymptotic nature of the perturbative series

A. Vainshtein (1964)



Borel summation: existence theorem (Nevanlinna & Sokal)

f(z) analytic in circle CR = {z :
∣∣z − R

2

∣∣ < R
2 }

f(z) =

N−1∑

n=0

an z
n +RN (z) , |RN (z)| ≤ AσN N ! |z|N

Borel transform

B(t) =

∞∑

n=0

an
n!
tn

R/2

analytic continuation to
Sσ = {t : |t− R+| < 1/σ}

f(z) =
1

z

∫ ∞

0
e−t/z B(t) dt

Re(t)

Im(t)

1/σ



Borel summation in practice

f(g) ∼
∞∑

n=0

cn g
n , cn ∼ βn Γ(γ n+ δ)

• alternating series: real Borel sum

f(g) ∼ 1

γ

∫ ∞

0

dt

t

(
1

1 + t

)(
t

βg

)δ/γ
exp

[
−
(
t

βg

)1/γ
]

• nonalternating series: ambiguous imaginary part

Re f(−g) ∼ 1

γ
P
∫ ∞

0

dt

t

(
1

1− t

)(
t

βg

)δ/γ
exp

[
−
(
t

βg

)1/γ
]

Im f(−g) ∼ ±π
γ

(
1

βg

)δ/γ
exp

[
−
(

1

βg

)1/γ
]



Borel summation in practice

direct quantitative correspondence between:

rate of growth ↔ Borel poles ↔ non-perturbative exponent

non-alternating factorial growth: cn ∼ βn Γ(γ n+ δ)

positive Borel singularity: tc =

(
1

β g

)1/γ

non-perturbative exponent: ±i π
γ

(
1

βg

)δ/γ
exp

[
−
(

1

βg

)1/γ
]



recall: Divergence of perturbation theory in QM

e.g. ground state energy:

E =

∞∑

n=0

cn (coupling)n

• cubic oscillator: cn ∼ − (60)n+1/2

(2π)3/2 Γ(n+ 1
2)

• quartic oscillator: cn ∼ (−1)n+1 3n
√

6
π3/2 Γ(n+ 1

2)

• Zeeman: cn ∼ (−1)n
(

4
π

)5/2 1
π2n

(
2n+ 1

2

)
!

• Stark: cn ∼ − 4
π

(
3
2

)2n+1
(2n)!

• periodic Sine-Gordon potential: cn ∼ n!

• double-well: cn ∼ 3n n!



recall: Divergence of perturbation theory in QM

e.g. ground state energy:

E =

∞∑

n=0

cn (coupling)n

• cubic oscillator: cn ∼ − (60)n+1/2

(2π)3/2 Γ(n+ 1
2)

• quartic oscillator: cn ∼ (−1)n+1 3n
√

6
π3/2 Γ(n+ 1

2)

• Zeeman: cn ∼ (−1)n
(

4
π

)5/2 1
π2n

(
2n+ 1

2

)
!

• Stark: cn ∼ − 4
π

(
3
2

)2n+1
(2n)!

• periodic Sine-Gordon potential: cn ∼ n!

• double-well: cn ∼ 3n n!

unstable

stable

stable

unstable

stable ???

stable ???



Bogomolny/Zinn-Justin mechanism in QM

... ...

• degenerate vacua: double-well, Sine-Gordon, ...

splitting of levels: a real one-instanton effect: ∆E ∼ e−
S
g2

surprise: pert. theory non-Borel summable: cn ∼ n!
(2S)n

I stable systems

I ambiguous imaginary part

I ±i e−
2S
g2 , a 2-instanton effect



Bogomolny/Zinn-Justin mechanism in QM

... ...

• degenerate vacua: double-well, Sine-Gordon, ...

1. perturbation theory non-Borel summable:
ill-defined/incomplete

2. instanton gas picture ill-defined/incomplete:
I and Ī attract

• regularize both by analytic continuation of coupling

⇒ ambiguous, imaginary non-perturbative terms cancel!



Bogomolny/Zinn-Justin mechanism in QM

e.g., double-well: V (x) = x2(1− g x)2

E0 ∼
∑

n

cn g
2n

• perturbation theory:

cn ∼ −3n n! → ImE0 ∼ ∓π e−
1

3g2

• non-perturbative instanton gas:

ImE0 ∼ ±π e−2 1
6g2

• BZJ cancellation ⇒ E0 is real and unambiguous

“resurgence” ⇒ cancellation to all orders



Bogomolny/Zinn-Justin mechanism in QM

• double-well potential: V (x) = 1
2 x

2 (1− g x)2

• instanton solution: g x0(t) = 1/(1 + e−t)
• classical Eucidean action: S0 = 1

6g2

approximate IĪ soln. : xcl(t) =

{
x0(R+ t) , t > 0

x0(R− t) , t < 0

effective interaction potential: Uint(t1, t2) = − 2
g2 e
−|t1−t2|

Zint = a2

∫
dt1

∫
dt2 e

−Uint(t1,t2)

(
a ≡ 1

g
√
π
e
− 1

6g2

)

T→∞∼ 1

2
T 2 a2 + T a2

∫ ∞

0
dt

(
exp

[
2

g2
e−t
]
− 1

)
+ . . .

• as g2 → 0, dominated by t→ 0 ???



Bogomolny/Zinn-Justin mechanism in QM

Zint
T→∞∼ 1

2
T 2 a2 + T a2

∫ ∞

0
dt

(
exp

[
2

g2
e−t
]
− 1

)
+ . . .

BZJ idea: analytically continue g2 → −g2

⇒ dominated by finite t ⇒ stable instanton gas
∫ ∞

0
dt

(
exp

[
− 2

g2
e−t
]
− 1

)
∼ −γE + ln

(
g2

2

)
+ Ei

(
− 2

g2

)

• ambiguous imaginary part (from log) when −g2 → g2

• recall Z ∼ e−E0 T ⇒ imaginary E0 from instanton gas

BZJ cancellation: cancels against ambiguous imaginary part
from analytic continuation of Borel summation of perturbation
theory



Bogomolny/Zinn-Justin mechanism in SUSY QM

Balitsky/Yung: SUSY double-well

Vbosonic = W 2 −W ′ = 1

2

(
1 + g x2

)2 − 1

• ground state perturbatively zero (very convergent!)

• SUSY broken non-perturbatively (single-instanton)

IĪ interaction involves bosonic and fermionic zero modes

Z1 =
T√
π

2

π g2

∫
dt e
− 1

3g2

(
e

(
−2t+ 2

g2
e−2t

)
− 1

)



Trans-series for Energy Eigenvalues

• perturbation theory: E(N)
pert. theory(g2) =

∑∞
k=0 g

2kE
(N)
k

• non-Borel-summable: incomplete

• all non-perturbative multi-instanton terms:
“trans-series”

E(N)(g2) = E
(N)
pert. theory(g2)

+

∞∑

k=1

k−1∑

l=1

∞∑

p=0

(
1

g2N+1
exp

[
− c

g2

])k

︸ ︷︷ ︸
k−instanton

(
ln

[
± 1

g2

])l

︸ ︷︷ ︸
quasi-zero-mode

ck,l,pg
2p

︸ ︷︷ ︸
perturbative fluctuations

precisely of Écalle’s trans-series form !



Decoding of Trans-series

f(g2) =

∞∑

n=0

∞∑

k=0

k−1∑

q=0

cn,k,q g
2n

[
exp

(
− S
g2

)]k [
ln

(
− 1

g2

)]q

• perturbative fluctuations about vacuum:
∑∞

n=0 cn,0,0 g
2n

• divergent (non-Borel-summable): cn,0,0 ∼ α n!
(2S)n

⇒ ambiguous imaginary non-pert energy ∼ ±i π α e−2S/g2

• but c0,2,1 = −α: BZJ cancellation !

pert flucs about instanton: e−S/g2 (
1 + a1g

2 + a2g
4 + . . .

)

divergent:
an ∼ n!

(2S)n (a lnn+ b)⇒ ±i π e−3S/g2
(
a ln 1

g2 + b
)

• 3-instanton: e−3S/g2

[
a
2

(
ln
(
− 1
g2

))2
+ b ln

(
− 1
g2

)
+ c

]

resurgence: ad infinitum, also sub-leading large-order terms



Lecture 2

I divergence of perturbation theory in QFT

I Euler-Heisenberg effective actions

I curing the IR renormalon puzzle in CPN−1 models



Divergence of perturbation theory in QFT

• Hurst (1952): φ4 perturbation theory is divergent:
(i) factorial growth of number of diagrams
(ii) explicit lower bounds on diagrams

If it be granted that the perturbation expansion does not
lead to a convergent series in the coupling constant for
all theories which can be renormalized, at least, then a
reconciliation is needed between this and the excellent
agreement found in electrodynamics between
experimental results and low-order calculations. It is
suggested that this agreement is due to the fact that the
S-matrix expansion is to be interpreted as an
asymptotic expansion in the fine-structure constant ...

C. A. Hurst, 1952



Dyson’s argument (QED)

• Dyson (1952): physical argument for divergence of QED
perturbation theory

F (e2) = c0 + c2e
2 + c4e

4 + . . .

Thus [for e2 < 0] every physical state is unstable
against the spontaneous creation of large numbers of
particles. Further, a system once in a pathological state
will not remain steady; there will be a rapid creation of
more and more particles, an explosive disintegration of
the vacuum by spontaneous polarization.

F. J. Dyson, 1952

• suggests perturbative expansion cannot be convergent



Euler-Heisenberg Effective Action (1935) review: hep-th/0406216

. . .

• 1-loop QED effective action in uniform background emag
field

• e.g., constant B field:

S = −e
2B2

8π2

∫ ∞

0

ds

s2

(
coth s− 1

s
− s

3

)
exp

[
−m

2s

eB

]

S = −e
2B2

2π2

∞∑

n=0

B2n+4

(2n+ 4)(2n+ 3)(2n+ 2)

(
2eB

m2

)2n+2

http://inspirehep.net/record/653094?ln=en


Euler-Heisenberg Effective Action

• e.g., constant B field: characteristic factorial divergence

cn = (−1)n+1 Γ(2n+ 2)

8

∞∑

k=1

1

(k π)2n+4

• recall Borel summation:

f(g) ∼
∞∑

n=0

cn g
n , cn ∼ βn Γ(γ n+ δ)

→ f(g) ∼ 1

γ

∫ ∞

0

ds

s

(
1

1 + s

)(
s

βg

)δ/γ
exp

[
−
(
s

βg

)1/γ
]

• reconstruct correct Borel transform:
∞∑

k=1

s

k2π2(s2 + k2π2)
= − 1

2s2

(
coth s− 1

s
− s

3

)



Euler-Heisenberg Effective Action

B field: QFT analogue of Zeeman effect

E field: QFT analogue of Stark effect

B2 → −E2: series becomes non-alternating

Borel summation ⇒ ImS = e2E2

8π3

∑∞
k=1

1
k2 exp

[
−km2π

eE

]
328 The European Physical Journal D

Fig. 1. Pair production as the separation of a virtual vacuum
dipole pair under the influence of an external electric field.

asymptotic e+ e− pairs if they gain the binding energy of
2mc2 from the external field, as depicted in Figure 1. This
is a non-perturbative process, and the leading exponential
part of the probability, assuming a constant electric field,
was computed by Heisenberg and Euler [2,3]:

PHE ∼ exp

[
−π m2 c3

e E !

]
, (3)

building on earlier work of Sauter [18]. This result sets a
basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e !
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2. (4)

As a useful guiding analogy, recall Oppenheimer’s compu-
tation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2m E

3/2
b

eE!

]
. (5)

Taking as a representative atomic energy scale the binding

energy of hydrogen, Eb = me4

2!2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E !4

]
. (6)

This result sets a basic scale of field strength and inten-
sity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

!4
= α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2. (7)

These, indeed, are the familiar scales of atomic ioniza-
tion experiments. Note that E ionization

c differs from Ec

by a factor of α3 ∼ 4 × 10−7. These simple estimates
explain why vacuum pair production has not yet been
observed – it is an astonishingly weak effect with con-
ventional lasers [20,21]. This is because it is primarily a
non-perturbative effect, that depends exponentially on the
(inverse) electric field strength, and there is a factor of ∼
107 difference between the critical field scales in the atomic
regime and in the vacuum pair production regime. Thus,
with standard lasers that can routinely probe ionization,
there is no hope to see vacuum pair production. However,

recent technological advances in laser science, and also in
theoretical refinements of the Heisenberg-Euler computa-
tion, suggest that lasers such as those planned for ELI
may be able to reach this elusive nonperturbative regime.
This has the potential to open up an entirely new domain
of experiments, with the prospect of fundamental discov-
eries and practical applications, as are described in many
talks in this conference.

2 The QED effective action

In quantum field theory, the key object that encodes vac-
uum polarization corrections to classical Maxwell electro-
dynamics is the “effective action” Γ [A], which is a func-
tional of the applied classical gauge field Aµ(x) [22–24].
The effective action is the relativistic quantum field the-
ory analogue of the grand potential of statistical physics,
in the sense that it contains a wealth of information about
the quantum system: here, the nonlinear properties of the
quantum vacuum. For example, the polarization tensor

Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and

the magnetic permeability µij of the quantum vacuum,
and is obtained by varying the effective action Γ [A] with
respect to the external probe Aµ(x). The general formal-
ism for the QED effective action was developed in a se-
ries of papers by Schwinger in the 1950’s [22,23]. Γ [A] is
defined [23] in terms of the vacuum-vacuum persistence
amplitude

〈0out | 0in〉 = exp

[
i

!
{Re(Γ ) + i Im(Γ )}

]
. (8)

Note that Γ [A] has a real part that describes dispersive ef-
fects such as vacuum birefringence, and an imaginary part
that describes absorptive effects, such as vacuum pair pro-
duction. Dispersive effects are discussed in detail in Gies’s
contribution to this volume [25]. The imaginary part en-
codes the probability of vacuum pair production as

Pproduction = 1 − |〈0out | 0in〉|2

= 1 − exp

[
−2

!
Im Γ

]

≈ 2

!
Im Γ (9)

here, in the last (approximate) step we use the fact that
Im(Γ )/! is typically very small. The expression (9) can be
viewed as the relativistic quantum field theoretic analogue
of the well-known quantum mechanical fact that the ion-
ization probability is determined by the imaginary part
of the energy of an atomic electron in an applied electric
field.

From a computational perspective, the effective action
is defined as [22–24]

Γ [A] = ! ln det [iD/ − m]

= ! tr ln [iD/ − m] . (10)

Schwinger pair production from vacuum:
ImS → physical pair production rate

• suggests Euler-Heisenberg series must be divergent



de Sitter/ anti de Sitter effective actions (Das & GD, hep-th/0607168)

• explicit expressions (multiple gamma functions)

LAdSd(K) ∼
(
m2

4π

)d/2∑

n

a(AdSd)
n

(
K

m2

)n

LdSd(K) ∼
(
m2

4π

)d/2∑

n

a(dSd)
n

(
K

m2

)n

• changing sign of curvature: a(AdSd)
n = (−1)na

(dSd)
n

• odd dimensions: convergent

• even dimensions: divergent

a(AdSd)
n ∼ B2n+d

n(2n+ d)
∼ 2(−1)n

Γ(2n+ d− 1)

(2π)2n+d

• pair production in dSd with d even

http://inspirehep.net/record/722246?ln=en


Euler-Heisenberg and Matrix Models, Large N, Strings, ...

• scalar QED Euler-Heisenberg in self-dual background
(F = ±F̃ ):

S =
F 2

16π2

∫ ∞

0

dt

t
e−t
(

1

sinh2(t)
− 1

s2
+

1

3

)

= − m4

16π2

∞∑

n=1

B2n+2

2n(2n+ 2)

(
2F

m2

)2n+2

• “electric” self-dual (F → i F ):

ImS =
m2 F

32π3

∞∑

k=1

(
2π

k
+

2F

k2m2

)
e−π km

2/F



Euler-Heisenberg and Matrix Models, Large N, Strings, ...

• scalar QED EH in self-dual background (F = ±F̃ ):

S =
F 2

16π2

∫ ∞

0

dt

t
e−t
(

1

sinh2(t)
− 1

s2
+

1

3

)

• Gaussian matrix model: λ = g N

F = −1

4

∫ ∞

0

dt

t
e−2λ t/g

(
1

sinh2(t)
− 1

s2
+

1

3

)

• c = 1 String: λ = g N

F =
1

4

∫ ∞

0

dt

t
e−2λ t/g

(
1

sin2(t)
− 1

s2
− 1

3

)

• Chern-Simons matrix model:

F = −1

4

∑

m∈Z

∫ ∞

0

dt

t
e−2(λ+2π im) t/g

(
1

sinh2(t)
− 1

s2
+

1

3

)



Euler-Heisenberg and Matrix Models, Large N, Strings, ...

• similar structure arises in more general topological string
theories and matrix models

• resurgence and Borel-Écalle summation provide a natural
framework for combining perturbative genus expansions with
non-perturbative information

• Mariño, Schiappa, Pasquetti, Aniceto, Vonk, ...

key problem: analytic continuation of functional integrals



Resurgence and Analytic Continuation

one view (of many) of resurgence:

resurgence can be viewed as a method for making formal
asymptotic expansions consistent with global analytic
continuation properties

• “alien calculus” (Écalle)

• median resummation: encodes intricate combinatorics of
cancellations in trans-series



Asymptotic Expansions & Analytic Continuation

Stirling expansion for ψ(x) = d
dx ln Γ(x) is divergent

ψ(1 + z) ∼ ln z +
1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · ·+ 174611

6600z20
− . . .

• functional relation: ψ(1 + z) = ψ(z) + 1
z

formal series ⇒ Imψ(1 + iy) ∼ − 1
2y + π

2

• reflection formula: ψ(1 + z)− ψ(1− z) = 1
z − π cot(π z)

reflection formula
⇒ Imψ(1 + iy) ∼ − 1

2y + π
2 + π

∑∞
k=1 e

−2π k y

“raw” asymptotics inconsistent with analytic continuation

• resurgence fixes this

Reψ (1 + i y) ∼ ln y + 2

∞∑

n=0

(2n+ 1)!

(2πy)2n+2
ζ(2n+ 2)− iπ

∞∑

k=1

e−2π k y



Asymptotic Expansions & Analytic Continuation

• this example arises in many QFT and String Theory
computations:

• Euler-Heisenberg, de Sitter, exact S-matrices, Chern-Simons
partition functions, matrix models, ...

∞∑

n=1

1
n2 π2

L2 − λ
= −L

2

2




cot
(
L
√
λ
)

L
√
λ

− 1

L2 λ




=
L

2π
√
λ

(
ψ

(
1 +

L
√
λ

π

)
− ψ

(
1− L

√
λ

π

))



Divergence of derivative expansion (GD, T. Hall, hep-th/9902064)

• time-dependent E field: E(t) = E sech2 (t/τ)

S = − m4

8π3/2

∞∑

j=0

(−1)j

(mλ)2j

∞∑

k=2

(−1)k
(

2E

m2

)2k Γ(2k + j)Γ(2k + j − 2)B2k+2j

j!(2k)!Γ(2k + j + 1
2)

• Borel sum perturbative expansion: large k (j fixed):

c
(j)
k ∼ 2

Γ(2k + 3j − 1
2)

(2π)2j+2k+2

ImS(j) ∼ exp

[
−m

2π

E

]
1

j!

(
m4π

4τ2E3

)j

• resum derivative expansion

ImS ∼ exp

[
−m

2π

E

(
1− 1

4

( m
Eτ

)2
)]

http://inspirehep.net/record/495103?ln=en


Divergence of derivative expansion

• Borel sum derivative expansion: large j (k fixed):

c
(k)
j ∼ 2

9
2
−2kΓ(2j + 4k − 5

2)

(2π)2j+2k

ImS(k) ∼ (2πEτ2)2k

(2k)!
e−2πmτ

• resum perturbative expansion:

ImS ∼ exp

[
−2πmτ

(
1− Eτ

m

)]

• compare:

ImS ∼ exp

[
−m

2π

E

(
1− 1

4

( m
Eτ

)2
)]

• different limits of full: ImS ∼ exp
[
−m2π

E f
(
m
E τ

)]

• derivative expansion must be divergent



Renormalons

QM: divergence of perturbation theory due to factorial growth
of number of Feynman diagrams

QFT: new physical effects occur, due to running of coupling
constant with momentum

faster source of divergence: “renormalons”

⇒ leading non-perturbative exponentials

non-alternating factorial growth: cn ∼ βn Γ(γ n+ δ)

positive Borel pole: tc =

(
1

β g

)1/γ

non-perturbative exponential: ±i π
γ

(
1

βg

)δ/γ
exp

[
−
(

1

βg

)1/γ
]



UV and IR Renormalons

e.g. QED with Nf massless flavors

• Adler function D(Q2) = −4π2Q2 dΠ(Q2)
dQ2

• bubble-chains, momentum k → interpolating expression

D(Q2) = Q2

∫ ∞

0
d(k2)

k2 αs(k
2)

(k2 +Q2)3

• running coupling αs(k2):

αs(k
2) =

αs(Q
2)

1− β0 αs(Q2)
4π ln(Q2/k2)

β0: first beta-function coefficient

• expand αs(k2) in series in powers of αs(Q2):

D(Q2) = αs(Q
2)

∞∑

n=0

(
β0 αs(Q

2)

4π

)n
Q2

∫ ∞

0
d(k2)

k2
(
ln(Q2/k2)

)n

(k2 +Q2)3



UV and IR Renormalons

D(Q2) = αs(Q
2)

∞∑

n=0

(
β0 αs(Q

2)

4π

)n
Q2

∫ ∞

0
d(k2)

k2
(
ln(Q2/k2)

)n

(k2 +Q2)3

• IR low momentum: split at k2 = Q2 (y ≡ 2 ln(Q2/k2))

Q2

∫ Q2

0
d(k2)

k2
(
ln(Q2/k2)

)n

(k2 +Q2)3
=

1

2

1

2n

∫ ∞

0
dy

e−y yn
(
1 + e−y/2

)3

∼ n!

2

(
1

2n
− 2

3n
+O

(
1

4n

))

• UV high momentum: (ȳ ≡ ln(k2/Q2))

Q2

∫ ∞

Q2

d(k2)
k2
(
ln(Q2/k2)

)n

(k2 +Q2)3
= (−1)n

∫ ∞

0
dȳ

e−ȳ ȳn

(1 + e−ȳ)3

∼ (−1)nn!

(
1− 3

2n+1
+O

(
1

3n

))



UV and IR Renormalons

renormalon poles:

tIRn = +
4π

β0
n , n = 2, 3, 4, . . .

tUVn = −4π

β0
n , n = 1, 2, 3, . . .

Borel poles due to renormalons are closer to the origin:

“dominant effect”

UV renormalon poles

instanton/anti-instanton poles

IR renormalon poles



IR Renormalon Puzzle in Asymptotically Free QFT

Asymptotically free QFT’s: e.g. Yang-Mills or CPN−1

(i) degenerate classical vacua

(ii) non Borel summable perturbation theory, due to infrared
(IR) renormalons, associated with IR-momentum behaviour of
certain bubble-chain diagrams

I IR renormalons ⇒ perturbation theory is ill-defined and
incomplete

I for CPN−1 on R2, or YM on R4, BZJ mechanism does not
work, because Borel poles are in ‘wrong’ locations



IR Renormalon Puzzle in Asymptotically Free QFT

perturbation theory: −→ ±i e−2S/β0

instantons on R2 or R4: −→ ±i e−2S

UV renormalon poles

instanton/anti-instanton poles

IR renormalon poles

appears that BZJ cancellation cannot occur

asymptotically free theories remain inconsistent



IR Renormalon Puzzle in Asymptotically Free QFT

resolution: there is another problem with the non-perturbative
instanton gas analysis (Argyres, GD, Ünsal, 1206.1890 1210.2423)

• scale modulus of instantons

• spatial compactification and principle of continuity

UV renormalon poles

instanton/anti-instanton poles

IR renormalon poles

neutral bion poles

cancellation occurs !

http://arxiv.org/abs/arXiv:1206.1890
http://inspirehep.net/record/1189994?ln=en


Topological Molecules in Spatially Compactified Theories

CPN−1: regulate scale modulus problem with (spatial)
compactification

ℝ2 → SL1 x ℝ1

x1

x2
x2

x1

Euclidean time

instantons fractionalize



Topological Molecules in Spatially Compactified Theories

temporal conpactification: information only about deconfined
phase

ℝ2ℝ1
ℝ1 x Sᵦ1

low Thigh T

spatial compactification: semi-classical small L regime
continuously connected to large L:

principle of continuity

ℝ2ℝ1
SL1 x ℝ1

“continuity”



Weak Coupling Non-Trivial Holonomy and Center Symmetry

(a) (b) (c)

I (a) Weak coupling trivial holonomy: Semi-classical
OK, but disconnected from strong coupling regime

I (b) Weak coupling non-trivial holonomy:
Semi-classical analysis OK, and continuously connected to
strong coupling regime

I (c) Strong coupling non-trivial holonomy:
Weak-coupling semi-classical analysis not OK



Topological Molecules in Spatially Compactified Theories

I monopole-instantons,Mi, or kink-instantons Ki,
i = 1, 2, . . . , N .

I Charged bions (correlated kink-anti-kink events):
Bij = [MiM̄j ], or Bij = [KiK̄j ], with i 6= j

I Neutral bions: Bii = [MiM̄i], and Bii = [KiK̄i]
I Neutral bion-anti-bion molecular events such as [BijBji],

[BijBjkBki], etc ...

hierarchy of scales:

rk � rb � dk−k � db−b,
↓ ↓ ↓ ↓
L � L log

(
1
g2

)
� LeS0 � Le2S0 .



Graded Resurgence Triangle

I Perturbation theory is independent of topological Θ-angle
⇒ ambiguity due to non-Borel summability of perturbation
theory is also independent of Θ.

I ⇒ non-Borel summability of large orders of perturbation
theory can never be cancelled by non-perturbative
configurations with non-vanishing topological charge. Can
only be cancelled by topological configurations with zero
topological charge, or equivalently, without any Θ-angle
dependence



Graded Resurgence Triangle

saddle points labelled by: [n,m]

n = ninstanton+nanti−instanton , m = ninstanton−nanti−instanton

[0, 0]

[1, 1] [1,−1]

[2, 2] [2, 0] [2,−2]

[3, 3] [3, 1] [3,−1] [3,−3]

[4, 4] [4, 2] [4, 0] [4,−2] [4,−4]

. . .
...

. . .



Graded Resurgence Triangle

vacuum

IĪ

I IĪĪ, IIĪ

(1 + a1g
2 + a2g

4 + · · · + . . . ) +e�S/g2

(1 + b1g
2 + b2g

4 + · · · + . . . )

+e�2S/g2

(1 + c1g
2 + c2g

4 + · · · + . . . )+e�3S/g2

(1 + d1g
2 + d2g

4 + · · · + . . . )

+ . . . +(log terms)



CPN−1 Model

CPN−1 model: two-dim. sigma model analog of Yang-Mills

I asymptotically free: β0 = N (independent of Nf )

I instantons, theta vacua, fermion zero modes, ...

I divergent perturbation theory (non-Borel summable)

I renormalons (both UV and IR)

I large-N analysis

I non-perturbative mass gap: mg = Λ = µ e−4π/(g2N)

I couple to fermions, SUSY, ...

I ‘unstable’ finite action non-self-dual classical solutions
(path integral saddle points)



Basics of CPN−1 Model

I classical bosonic action: S = 2
g2

∫
d2x (Dµn)†Dµn

I n = N -component column vector with n†n = 1

I local U(1) symmetry , global U(N) symmetry

I Dµ = ∂µ + iAµ, with abelian gauge field Aµ = i n†∂µn

I target spaceMN,1 ≡ CPN−1 = U(N)
U(N−1)×U(1)

I N2 − 1− (N − 1)2 = 2(N − 1) real fields

I topological charge

Q = − i

2π

∫
d2x εµν∂µ

(
n†∂νn

)
=

1

2π

∫
d2x εµν∂µAν

I couple to fermions

Sfermion =
2

g2

∫ [
−iψ̄γµDµψ + 1

4

(
(ψ̄ψ)2 + (ψ̄γ3ψ)2 − (ψ̄γµψ)2

)]



Instantons in CPN−1 Model

Bogomolny factorization:

(Dµn)†Dµn = |(Dµ ± iεµνDν)n|2 ∓ i εµν∂µ
(
n†∂νn

)

self-dual instanton equations

Dµn = ∓i εµνDνn

homogeneous fields: n ≡ v
|v|

instanton : v = v(z) , anti-instanton: v = v(z̄)

e.g., simplest instanton for CP1 on R2:

v =

(
1

(z − b)/a

)
⇒ Q =

1

π

∫
d2x

|a|2
(|a|2 + |z − b|2)2

= 1



“Center Symmetry” in CPN−1

2(N − 1) angular fields:




n1

n2

n3
...
nN




=




eiϕ1 cos θ12
eiϕ2 sin θ1

2 cos θ22
eiϕ3 sin θ1

2 sin θ2
2 cos θ32

...
eiϕN sin θ1

2 sin θ2
2 sin θ3

2 . . . sin
θN−1

2




order parameter:

Ω(x1) =




ei[ϕ1(x1,0)−ϕ1(x1,L)] 0 . . . 0

0 ei[ϕ2(x1,0)−ϕ2(x1,L)] . . . 0
...
0 0 . . . ei[ϕN (x1,0)−ϕN (x1,L)]


 (1)

twisted b.c.’s: ZN : Ω −→ ei
2πk
N Ω



“Center Symmetry” in CPN−1

V−[Ω] =
2

πβ2

∞∑

n=1

1

n2
(−1 + (−1)nNf )(|tr Ωn| − 1) (thermal)

V+[Ω] = (Nf − 1)
2

πL2

∞∑

n=1

1

n2
(|tr Ωn| − 1) (spatial)

minima:

Ωthermal
0 = ei

2πk
N




1
1

. . .
1


 (thermal)

Ωspatial
0 =




1

ei
2π
N

. . .

ei
2π(N−1)

N




(spatial)



“Center Symmetry” in CPN−1

I Nf > 1: repulsive interaction between eigenvalues of
holonomy Ω: center symmetry preserved

I Nf = 1: N = (2, 2) SUSY CPN−1: perturbative potential
vanishes to all orders (SUSY). Non-perturbatively induced
potential stabilizes center-symmetry

I Nf = 0: deformed CPN−1, or integrating out heavy
fermions

(a) (b) (c)



Fractionalized Instantons in CPN−1

• untwisted instanton on R1 × S1
L:

v =

(
1

λ1 + λ2 e
− 2π
L
z

)

• spatial twist:

vtwisted =

(
1(

λ1 + λ2 e
− 2π
L
z
)
e

2π
L
µ2 z

)

• twisted boundary condition ⇒ factor e
2πi
L
µ2 x2

• but, non-holomorphic: ⇒ factor e
2π
L
µ2 z

⇒ twist in x2 also prescribes dependence in non-compact
direction x1



Fractionalized Instantons in CPN−1

Figure: Q = 1 instanton in CP1, (N = 2), in weak coupling
center-symmetric background. Small circle: instanton splits into two
Q = 1

2 instantons.

Figure: Wilson loop for small Q = 1 instanton (purple). Large
instanton (red) splits into two separate kink-instantons. Each wraps
half-way around the cylinder.



Fractionalized Instantons in CPN−1

Figure: Q = 1 instanton in CP2, (N = 3), in weak coupling
center-symmetric background. Small circle: instanton splits into three
Q = 1

3 instantons.

Figure: Wilson loop for small Q = 1 instanton (blue). Large instanton
(black) splits into three separate kink-instantons. Each wraps
one-third-way around the cylinder.



Fractionalized Instantons in CPN−1

• fundamental fractionalized instantons with Q = 1
N

• bosonic zero modes:

2N
short-distance−−−−−−−−→ 2 + 1 + (2N − 3) = (aI ∈ R2) + (ρ ∈ R+) + (orient.)

2N
long-distance−−−−−−−−→ N [1 + 1] = N [(a ∈ R) + (φ ∈ U(1))]



Fractionalized Bions in CPN−1

• bions: topological molecules of
instantons/anti-instantons

• characterized by (extended) Cartan matrix (as in YM)

• “orientation” dependence of IĪ interaction:

• charged bions: Âij < 0; repulsive bosonic interaction

Bij = [KiK̄j ] ∼ e−Si(ϕ)−Sj(ϕ)eiσ(αi−αj)

• neutral bions: Âii > 0; attractive bosonic interaction

<Bii = <[KiK̄i] ∼ e−2Si(ϕ)



Fractionalized Bions in CPN−1

• charged bions:

Aij = AiAj
(αi.αj

2

)2Nf
(
g2

2L

)2Nf

2

∫ ∞

0
dτ e−V

ij
eff(τ)

where (ξ ≡ 2π
N L)

V ij
eff(τ) = −8ξ

αi.αj
g2

e−ξτ + 2Nfξτ

• characteristic scale dominating the integral:

τ∗ =
1

ξ
log

(
4π

g2NNf

)
, rb = rk log

(
4π

g2NNf

)
Nf ≥ 1

• quasi-zero mode integral:

I(g2) =
∫∞

0 dτ exp
[
−
(

4ξ
g2 e
−ξτ + 2Nfξτ

)]
=
(
g2

4ξ

)2Nf ∫ 4ξ

g2

0 du e−u u2Nf−1

−→︸︷︷︸
g2�1

(
g2

4ξ

)2Nf
Γ(2Nf ) =

(
g2N
8π

)2Nf
Γ(2Nf )



Fractionalized Bions in CPN−1

• neutral bions:

Ĩ(g2) =

∫ ∞

0
dτ exp

[
−
(
−8ξ

g2
e−ξτ + 2Nfξτ

)]

• both bosonic and fermionic zero mode induced interactions are
attractive (as in gauge theory)

• semi-classical [KiK̄i] configuration seems meaningless

N.B. [KiK̄i] has same quantum nos. as pert. vacuum

• generalized BZJ-prescription: deform the contour of
integration, or equivalently, rotate g2 → g2eiθ

Ĩ(g2, Nf )→ I(−g2, Nf ) =

(
−g

2N

8π

)2Nf

Γ(2Nf )

• Nf = 0: ambiguous result:

Ĩ(g2, Nf = 0) =

(
log

(
−g

2N

8π

)
− γ
)

= I(g2)± iπ



Fractionalized Bions in CPN−1

• neutral bions: same ambiguity as in bosonic QM
(Bogomolny)

• kink-anti-kink amplitude is two-fold ambiguous:

[KiK̄i]θ=0± =
(

log
(
g2N
8π

)
− γ
)

2A2
i e
−2S0 ± iπ2A2

i e
−2S0



Perturbation Theory in Twisted CPN−1

• small radius limit: effective QM Hamiltonian

Hzero
αk

= g2

2 P
2
θ + ξ2

2g2 sin2 θ+ g2

2 sin2 θ
P 2
φ , ξ = 2π

N , (set L = 1)

• Born-Oppenheimer approximation: drop high φ-sector modes
effective Mathieu equation:

ψ′′ +

(
p+

ξ2

2g2
cos(2gθ)

)
ψ = 0, p = 2E − ξ2

2g2

• Stone-Reeve (Bender-Wu methods):

E(g2) ≡ E0ξ
−1 =

∞∑

q=0

aq(g
2)
q
, aq ∼ −

2

π

(
1

4ξ

)q
q!

(
1− 5

2q
+O(q−2)

)

• non-Borel summable!



Perturbation Theory in Twisted CPN−1

• Stone-Reeve (Bender-Wu methods):

E(g2) ≡ E0ξ
−1 =

∞∑

q=0

aq(g
2)
q
, aq ∼ −

2

π

(
1

4ξ

)q
q!

(
1− 5

2q
+O(q−2)

)

• lateral Borel summation ⇒

S0±E(g2) =
1

g2

∫

C±
dt BE(t) e−t/g

2
= <SE(g2)∓ i8ξ

g2
e
− 4ξ

g2

= <B0 ∓ i
16π

g2N
e
− 8π
g2N



BZJ cancellation in Twisted CPN−1

• perturbative sector: lateral Borel-Écalle summation

B±E(g2) =
1

g2

∫

C±
dtBE(t) e−t/g

2
= ReBE(g2)∓ iπ 16

g2N
e
− 8π
g2 N

• non-perturbative sector: bion-bion amplitudes

[
KiK̄i

]
± =

(
ln

(
g2N

8π

)
− γ
)

16

g2N
e
− 8π
g2 N ± iπ 16

g2N
e
− 8π
g2 N

exact cancellation !

application of resurgence to nontrivial QFT



Graded Resurgence Triangle and Extended SUSY

extended SUSY: no superpotential; no bions; no
condensates

[0, 0]

[1, 1] [1,�1]

[2, 2] ? [2,�2]

[3, 3] ? ? [3,�3]

[4, 4] ? ? ? [4,�4]

. .
. ...

. . . (7.34)

Since there are no neutral bion configurations, the confluence equation (7.25) and (7.28)

simplify into

0 = Im
⇣
B[0,0],✓=0±

⌘
, 0 = Im

⇣
B[1,1],✓=0±

⌘
(7.35)

meaning that there is no imaginary ambiguity in the Borel sum of ordinary perturbation

theory, as well as in perturbation theory around the instantons. In other words, the cells

[n, ±n], n = 0, 1, 2, . . . must be Borel summable, or equivalently, there are no singularities in

the Borel plane along R+ for extended supersymmetric theories. This is the major di↵erence

between the bosonic theory and extended supersymmetric theory.

It should be noted that the existence of instantons implies that perturbation theory is a

divergent asymptotic series. However, whether such a series is Borel summable (alternating,

Gevrey-one) or non-Borel summable (non-alternating, Gevrey-one) is a more refined question,

which is tied with the existence of singularities on the Borel complex-t plane along the R+ ray.

These singularities, in the semi-classical regime, would be associated with neutral topological

events as opposed to single instanton events. Consequently, the absence of such neutral

molecules in the semi-classical regime of a given theory is the same as Borel summability.

Our argument for the Borel summability of the extended supersymmetric theory is for the

semi-classical regime. In these theories, it is believed that there are no phase transition as the

holomorphic parameters are varied. Therefore, if this is true, then as the theory moves from

the semi-classical regime to the regime of strong coupling, the Borel summability must still

hold. This implies the Borel summability of the extended supersymmetric quantum theory

on R2.

7.6 ⇥-dependence of vacuum energy density and topological susceptibility

Once the cancellation of the ambiguous imaginary parts is assured, we obtain finite and

physical results for observables, such as vacuum energy density, topological susceptibility,

– 73 –

no cancellations can occur

⇒ perturbative expansions must be Borel summable !



Microsopic Origin of Mass Gap in Twisted CPN−1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
g0

1

2

3

4

a0

a1

a2

a3

b1

b2

b3

b4

h = ξ
2g2 = 2π

N(2g2)

∆En =
g2

2
(bn+1

(
h2
)
− an

(
h2
)
)

=
g2

2

(
24n+5

n!

(
2

π

) 1
2

hn+ 3
2 e−4h

(
1− 6n2 + 14n+ 7

32h
+O

(
1

h2

)))
.(2)

mg = C
N g2

(
1− 7N g2

32π +O
(
(N g2)2

))
e
− 4π
N g2 ∼ e−SI/N



Lecture 3

I Stokes Phenomenon

I Uniform WKB and origin of trans-series structure

I all non-perturbative orders from perturbation theory



The Stokes Phenomenon



The Stokes Phenomenon

• supernumerary rainbows

1

2π

∫ ∞

−∞
ei(

1
3
t3+x t) dt ∼





e−
2
3 x

3/2

2
√
π x1/4 , x→ +∞

sin( 2
3

(−x)3/2+π
4 )√

π (−x)1/4 , x→ −∞



The Stokes Phenomenon

Stokes: • how to reconcile two exponentials in one region
with one exponential in another region?

• how to reconstruct an analytic solution from
non-analytic approximations?

Stokes line: real exponentials

anti-Stokes line: imaginary exponentials

First consider crossing a cut. Analytically continuing the solution, Eq. 5, counter-clockwise around the turning
point a we find that ψ± → −iψ∓. Thus in crossing the cut in a clockwise sense, in order to insure continuity of our
continued solution, we must make the changes

(0, z) → i(z, 0)

(z, 0) → i(0, z). (6)

Dominancy (or subdominancy) is not changed.
Now consider the process of crossing an anti-Stokes line, where dominant and subdominant solutions exchange

character. Begin in the vicinity of a nearby Stokes line, and suppose the solution to Eq. 1 is approximated by a
dominant expression (z, 0)d given by Eq. 5. A small subdominant part could also be present, so to speak lost in the
noise of the WKBJ approximation.

Trying to continue the solution past an anti-Stokes line creates a problem, because the previously small subdominant
part, with an unknown coefficient, becomes dominant, making our solution totally inaccurate. To correct this one
must, in the vicinity of the Stokes line, choose the coefficient of the subdominant solution so that the continuation
to a nearby anti-Stokes line will give the correct solution. The necessary coefficient of the subdominant solution is
called the Stokes constant.

For a first order turning point the Stokes constant can be derived simply by requiring that the solution be single
valued upon continuation about the turning point. We know this is true because for Q = −z the point z = 0 is a
regular point of the differential equation and the solution is representable by a Taylor series with infinite radius of
convergence. This is not the case for all forms of Q, in some cases the solution itself may possess cuts originating
at zeros or singularities of Q. Begin with a subdominant solution, (0, z)s along the positive real axis of Fig. 2, a
Stokes line. We deliberately begin with a subdominant solution so that the solution is small and cannot contain any
dominant part due to the approximate nature of the WKBJ solution. Now continue this solution in both directions
about the turning point.

FIG. 2. Stokes diagram for a first order turning point.

Passing upward into domain 3, or downward into domain 7, an anti-Stokes line is passed and the solution becomes
dominant, reaching maximal dominancy along the Stokes lines separating domains 3,4 and domains 6,7. On crossing
these Stokes lines we must add subdominant parts to make up for any lost by the WKBJ approximation. Thus on
passing into domain 4 the solution becomes (0, z)d +T1(z, 0)s and in domain 6 it becomes (0, z)d −T2(z, 0)s where T1

and T2 are Stokes constants, and the signs are chosen to reflect the fact that the Stokes line is crossed clockwise in one
case and counterclockwise in the other. Now continue both solutions into domain 5. Coming from domain 6 we cross
the cut clockwise, giving i(z, 0)d − iT2(0, z)s. From domain 4 we cross an anti-Stokes line, giving (0, z)s + T1(z, 0)d.
Equating these determines the Stokes constants to be T1 = T2 = i.

We can now use this result to relate the asymptotic behavior at +∞ to that at −∞. For large positive x the

solution has the form (0, z)s ∼ e−
2
3x3/2

/x1/4. Note that the branch of the square root is determined by the fact that
this solution must be subdominant, and that we have multiplied by a constant phase to choose the solution to be real.

Writing z = reiπ, a phase choice determined by our placement of the cut in Fig. 2, we find (0, z) = ei( 2
3 r3/2−π/4)/r1/4

and (z, 0) = e−i( 2
3 r3/2+π/4)/r1/4. Placing the cut in another position will modify some expressions, but not final

3



The Stokes Phenomenon

~2 ψ′′ +Q2 ψ = 0



The Stokes Phenomenon

Stokes: • how to reconcile two exponentials in one region
with one exponential in another region?

• how to reconstruct an analytic solution from
non-analytic approximations?

The integral is very small unless x # (dω/dk)t, giving the usual identification of dω/dk as group velocity, and thus
Ψ+ is outgoing for x > 0 if dω/dk > 0. Now consider the spatial dependence of Ψ+ with a complex frequency. If the
mode frequency is ω = ωr + iγ expanding eik(ω)x gives

Ψ+ # e(ik0x−γxdk/dω). (20)

We then obtain the rules for the asymptotic behaviour of the solution. If γ > 0 and dω/dk > 0 the solution
is decreasing (subdominant) for large x. Physically the spatial behaviour can be simply understood in terms of
information propagation. If the mode is growing the news of its growth propagates outward at the group velocity, so
the mode is largest for small |x|, i.e. it is damped in the direction of propagation. In the following we will use the
introduction of a small dissipation to clarify the choice of the solution∗.

IV. BOUND STATES - INSTABILITIES

The bound state problem, or the search for instability, is generically given by a function Q(z) which is real on the
real axis, with two first order zeros at points a and b, and Q is positive between a and b and negative otherwise. The
Stokes diagram is shown in Fig. 4. Denote the Stokes constants as Sk, where k refers to a line bordering domain k.
We will find that the boundary conditions immediately give the Bohr-Sommerfeld condition, which determines the
energy of the bound state, or equivalently, the growth rate of the instability, independent of the values of the Stokes
constants. We further find the six Stokes constants can be represented by a single magnitude and one phase δ but
with a sign which must be distributed as shown in Fig. 4. In addition, the bound state boundary conditions fix the
Stokes constants to be equal to the value for isolated singularities.

FIG. 4. Stokes plot for the bound state problem.

Begin at large positive x with a subdominant solution. Define [a, b] = eiW . Along the real axis between a and b Q
is real and positive and thus W is real and positive. With the choice of cuts as shown, and using Q positive and real
for a < x < b we have for x > b and for x < a that Q1/2 ∼ e−iπ/2, Q1/4 ∼ e−iπ/4. Thus for b < z the solution (b, z)
is dominant. Begin with a subdominant solution at large positive x and continue:
(1) (z, b)s

(2) (z, b)d

(3) (z, b)d + S2(b, z)s = eiW (z, a)d + e−iW S2(a, z)s

(4) eiW (z, a)d + [eiWS4 + e−iW S2](a, z)s

(5) eiW (z, a)s + [eiWS4 + e−iW S2](a, z)d

(6) −ieiW (a, z)s − i[eiWS4 + e−iW S2](z, a)d

The differential equation is real, and thus the complex phase of the solution is constant along the real axis. (z, a)d

∗Note that the convention e−iωt, is opposite from that used by Heading, which switches upper and lower half planes in some
arguements.

7

Similarly by continuation through the lower half plane it can be shown that all Stokes constants can be written in
the form Sk = iSe±iδ , S =

√
1 + e−2W , for the line bordering domain k, with the sign of the phase δ distributed as

shown in Fig. 7.
The phase can be determined for a particular functional form of Q(z) by an analytical continuation of the solution

(Bender-Orszag 1978, Ford 1959a 1959b, Soop 1965), a numerical integration of the differential equation, or by a
matching of the solution to a numerical evaluation of the two Taylor series solutions. Shown in Figs. 9, 10 is the
phase δ and the Stokes constant for the overdense barrier scattering problem with Q = z2 − b2, determined using the
Taylor series to find the reflection and transmission coefficients. Note that the Stokes constant deviates significantly
from the value given by the isolated singularity analysis, S = i only for b < 1.

VI. UNDERDENSE BARRIER - SCATTERING

The underdense barrier problem is given by a function Q(z) which is real on the real axis, with two first order
zeros at points a and b which are pure imaginary, and Q is positive everywhere on the real axis. The Stokes diagram
is shown in Fig. 11. Again define W through [a, b] = e−W . Along the imaginary axis between a and b Q is real
and positive and W is real and positive. Consider an incident wave from the left, giving again outgoing boundary
conditions at the far right. For this problem Heading discusses two methods which he discards as approximate. The
first method is continuation in the lower half plane alone. This gives a transmission coefficient of 1 and zero reflection.
It is used by Berry (1990) in an analysis of the birth point of reflected waves.

FIG. 11. Stokes plot for the underdense barrier.

Continuation in the upper half plane gives a transmission coefficient of 1 and a reflection coefficient of r = −ie−W .
This continuation involves the singular point z = b only, and the correct Stokes constant is that associated with an
isolated first order zero, S = i. This is because, as far as the continuation is concerned, the second singularity at
z = a does not exist, and the Stokes diagram consists only of the structure in the upper half plane.

However, neither of these continuations give solutions which conserve flux and neither can be considered correct.
A third method is given by Heading, who describes it as more accurate, but does not give a justification for its use.
A justification for its use comes from the consideration of causality. Not only is it necessary to consider outgoing
wave boundary conditions, a small dissipation must be considered so as to cause waves to damp in the direction of
propagation. This is done by multiplying Q(z) by eiν with ν small and positive. Since Stokes lines are given by
dz ∼ 1/

√
Q(z) this results in a rotation of the Stokes plot. Shown in Fig. 12 is the resulting plot (the rotation has

been exaggerated for clarity). Now the only possible continuation from large real positive z to large real negative z
is clear. It is necessary to begin in domain 1 and continue to domain 7, a process which necessarily involves both
singular points.

12



The Stokes Phenomenon

Stokes: • how to reconcile two exponentials in one region
with one exponential in another region?

• how to reconstruct an analytic solution from
non-analytic approximations?

different exponentials turn on/off crossing between sectors

• universal smooth behavior (Stokes, Berry)

The inferior term enters as it were into a mist, is
hidden for a little from view, and comes out with its
coefficients changed. The range during which the
inferior term remains in a mist decreases indefinitely
as the [asymptotic parameter] increases indefinitely.

G. G. Stokes, 1902

• intricate monodromy behaviour



Universal large-order WKB

• Liouville-Green (WKB) approximation:

~2 ψ′′ +Q(x)ψ(x) = 0 → ψ±(x) ∼ e±i/~
∫ x√Q

Q1/4
(1 + . . . )

• all-orders expansion: Dingle’s universal large-order form:

ψ±(S) ∼ 1√
S′
e±i S/~

∞∑

n=0

n!

(±i ~
2S

)n

• “singulant” variable: S =
∫ x√

Q

• exponential asymptotics of special functions, and of
wavefunctions



Resurgence and Analytic Continuation

resurgence can be viewed as a method for making asymptotic
expansions consistent with global analytic continuation
properties

e.g.: asymptotics of special functions



Resurgence: Exponential Asymptotics of Special Functions

• zero-dimensional partition functions

Z1(λ) =

∫ ∞

−∞
dx e−

1
2λ

sinh2(
√
λx) =

1√
λ
e

1
4λ K0

(
1

4λ

)

∼
√
π

2

∞∑

n=0

(−1)n(2λ)n
Γ(n+ 1

2)2

n! Γ
(

1
2

)2 Borel-summable

Z2(λ) =

∫ π/
√
λ

0
dx e−

1
2λ

sin2(
√
λx) =

π√
λ
e−

1
4λ I0

(
1

4λ

)

∼
√
π

2

∞∑

n=0

(2λ)n
Γ(n+ 1

2)2

n! Γ
(

1
2

)2 non-Borel-summable

• connection formula: K0(e±iπ |z|) = K0(|z|)∓ i π I0(|z|)



Resurgence: Exponential Asymptotics of Special Functions

• Borel summation

Z1(λ) =

√
π

2

1

2λ

∫ ∞

0
dt e−

t
2λ 2F1

(
1

2
,
1

2
, 1;−t

)

• lateral Borel summation

Z1(eiπ λ)− Z1(e−iπ λ)

=

√
π

2

1

2λ

∫ ∞

1
dt e−

t
2λ

[
2F1

(
1

2
,
1

2
, 1; t− iε

)
− 2F1

(
1

2
,
1

2
, 1; t+ iε

)]

= −(2i)

√
π

2

1

2λ
e−

1
2λ

∫ ∞

0
dt e−

t
2λ 2F1

(
1

2
,
1

2
, 1;−t

)

= −2 i e−
1

2λ Z1(λ)

• connection formula: Z1(e±iπ λ) = Z2(λ)∓ i e− 1
2λ Z1(λ)



Resurgence in Nonlinear ODEs

what changes going from linear to nonlinear ODE’s ?

• Painlevé functions are generalization of special functions to
nonlinear ODE’s: many physical applications: statistical
physics, optics, QFT, strings, ...

• resurgent trans-series are the natural language for their
asymptotics

see: Mariño, Schiappa, Aniceto, Pasquetti, Vonk, ...



Resurgence in Nonlinear ODEs

• physical example: Painlevé I:
(i) all-genus solution of c=0 2d gravity
(ii) double-scaling limit of quartic matrix model
• perturbative amplitudes generated by series solution of
Painlevé I: F ′′(z) = u(z), where

u2(z)− 1

6
u′′ = z

• non-perturbative results (Shenker, David, ...):

F (1)(z) =
i

8
√
π 33/4 z5/8

exp

[
−8
√

3

5
z5/4

](
1− 37

64
√

3

1

z5/4
+ . . .

)

• resurgence framework ...



Resurgence in Nonlinear ODEs: e.g. Painlevé I

Painlevé I: u2(z)− 1
6u
′′ = z

I u =
√
z w(z)

I ξ = zα, matching powers ⇒ α = 5
4 :

d2w

dξ2
+

1

ξ

dw

dξ
− 4

25

w

ξ2
=

96

25
(w2 − 1)

I ansatz: w ∼ e−ξ√
ξ

∑∞
n=0

a
(0)
n
ξ2n ⇒ a(0) =

{
1,− 1

48 ,− 49
4608 , . . .

}

I large-order behavior non-Borel-summable:

a(0)
n ∼ −Γ

(
2n− 1

2

)(
8
√

3

5

)−2n+1/2
31/4

2π3/2

(
1 +O

(
1

n

))

I imaginary part: Im ∼ ± e−Aξ√
ξ

, A ≡ 8
√

3
5



Resurgence in Nonlinear ODEs: e.g. Painlevé I

Painlevé I:
d2w

dξ2
+

1

ξ

dw

dξ
− 4

25

w

ξ2
=

96

25
(w2 − 1)

I perturbative ansatz: w ∼ e−ξ√
ξ

∑∞
n=0

a
(0)
n
ξ2n

I non-perturbative term: Im ∼ ± e−Aξ√
ξ

, A ≡ 8
√

3
5

I nonlinearity ⇒ also need e∓ l A ξ terms, l ∈ Z+

I double trans-series ansatz :

w ∼ e−ξ√
ξ

∞∑

l=0

∞∑

k=0

σl1 σ
k
2 e
−(l−k)Aξ F(l,k)

(
1

ξ

)

I resurgence ⇒ F(l,k)

(
1
ξ

)
fluctuations entwined

I full resurgent details still being investigated (sectors and
analytic continuation)



Resurgence in Nonlinear ODEs: e.g. Painlevé II

Painlevé II:
u′′ − 2u3(z) + 2 z u(z) = 0

perturbative solution is non-Borel-summable

⇒ trans-series solution(s)

I Tracy-Widom law for statistics of max. eigenvalue for
Gaussian random matrices

I double-scaling limit in 2d Yang-Mills

I double-scaling limit in unitary matrix models

I all-genus solution of 2d supergravity



Uniform WKB and Resurgent Trans-Series for Eigenvalues

• origin of trans-series structure (GD, Ünsal, 1306.4405, 1401.5202)

−g4 d2

dy2
ψ(y) + V (y)ψ(y) = g2E ψ(y)

where

VDW(y) = y2(1 + y)2 , VSG(y) = sin2(y)

• weak coupling: degenerate harmonic classical vacua

• non-perturbative effects: g2 ↔ ~ ⇒ exp
(
− c
g2

)

• approximately harmonic

⇒ uniform WKB with parabolic cylinder functions

http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en


Uniform WKB and Resurgent Trans-Series for Eigenvalues

d2ψ

dx2
+
p2(x)

~2
ψ(x) = 0

• uniform WKB: “comparison functions”

uniform approxs. are smooth at turning points (p = 0)

ψ =
1√
S′(x)

φ(S(x)) ⇒ d2φ

dS2
+
P 2(S)

~2
φ(S) = 0

I P 2(S) = constant → usual WKB: ψ(x) = ei
∫
p√

p(x)

I P 2(S) = S → uniform ψ(x) =
(
∫ x p)1/6

√
p(x)

Ai
(

3
2

(∫ x
p
)2/3)

I P 2(S) = S2 → uniform ψ =
(
∫ x p)1/4

√
p(x)

D (E−1)
2

((
2
∫ x

p
)1/2)



Uniform WKB and Resurgent Trans-Series for Eigenvalues

• uniform WKB ansatz (ν a parameter)

ψ(y) =
Dν

(
1
gu(y)

)

√
u′(y)

• nonlinear equation for u(y):

V (y)− 1

4
u2(u′)2 − g2E + g2

(
ν +

1

2

)
(u′)2 +

g4

2

√
u′
(

u′′

(u′)3/2

)′
= 0

• perturbative expansion → u(y) and energy:

E = E(ν, g2) =

∞∑

k=0

g2kEk(ν)

• ν = N : Rayleigh-Schrödinger perturbation theory:

E
(
ν = N, g2

)
≡ E(N)

pert. theory(g2)

• not Borel summable !



Uniform WKB and Resurgent Trans-Series for Eigenvalues

• global analysis ⇒ boundary conditions:

-1 -

1
2

y

-
3 Π

2
-Π -

Π

2
Π

2
Π

3 Π

2

y

• midpoint ∼ 1
g ; non-Borel summability ⇒ g2 → e±i ε g2

Dν(z) ∼ zν e−z2/4 (1 + . . . ) + e±iπν
√

2π

Γ(−ν)
z−1−ν ez

2/4 (1 + . . . )

−→ exact quantization condition

1

Γ(−ν)

(
e±iπ 2

g2

)−ν
=
e−S/g

2

√
π g2

F(ν, g2)



Uniform WKB and Resurgent Trans-Series for Eigenvalues

• exact quantization condition

1

Γ(−ν)

(
e±iπ 2

g2

)−ν
=
e−S/g

2

√
π g2

F(ν, g2)

• expand ν = N + δν:

LHS = −N !

(
e±iπ 2

g2

)−N {
δν −

[
γ + ln

(
e±iπ 2

g2

)
− hN

]
(δν)2 + . . .

}

⇒ ν is only exponentially close to N (here ξ ≡ e−S/g
2√

π g2
):

ν = N +

(
2
g2

)N
F(N, g2)

N !
ξ

−

(
2
g2

)2N

(N !)2

[
F ∂F
∂N

+

(
ln

(
e±iπ 2

g2

)
− ψ(N + 1)

)
F2

]
ξ2 +O(ξ3)

• insert: E = E(ν, g2) =
∑∞

k=0 g
2kEk(ν) ⇒ trans-series!



Uniform WKB and Resurgent Trans-Series for Eigenvalues

conclusion:

for QM problems with degenerate harmonic vacua, the
trans-series form of the exact expressions for energy eigenvalues
arises from the (resurgent) analytic continuation properties of
the parabolic cylinder functions

generic and universal

Zinn-Justin/Jentschura conjecture: generate entire trans-series
from

(i) perturbative expansion E = E(ν, g2) (ν = ν(E, g2))
(ii) single-instanton fluctuation function F(E, g2)
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

uniform WKB approach explains why this is the case



Connecting Perturbative/Non-Perturbative Sectors (GD,Unsal,

1401.5202)

Zinn-Justin/Jentschura: F(E, g) ∼ exp[−A(E, g)/2]

• perturbative function: (B ≡ ν + 1
2)

BDW(E, g) = E + g

(
3E2 +

1

4

)
+ g2

(
35E3 +

25

4
E

)

+g3

(
1155

2
E4 +

735

4
E2 +

175

32

)
+ . . .

• non-perturbative function:

ADW(E, g) =
1

3g
+ g

(
17E2 +

19

12

)
+ g2

(
227E3 +

187E

4

)

+g3

(
47431

12
E4 +

34121

24
E2 +

28829

576

)
+ . . .

• uniform WKB → E = E(B, g)

http://inspirehep.net/record/1278369?ln=en


Connecting Perturbative/Non-Perturbative Sectors

• perturbative function:

EDW(B, g) = B − g
(

3B2 +
1

4

)
− g2

(
17B3 +

19

4
B

)
−

g3

(
375

2
B4 +

459

4
B2 +

131

32

)
− g4

(
10689

4
B5 +

23405

8
B3 +

22709

64
B

)
− . . .

• non-perturbative function (F ∼ exp[−A/2]):

ADW(B, g) =
1

3g
+ g

(
17B2 +

19

12

)
+ g2

(
125B3 +

153B

4

)
+

g3

(
17815

12
B4 +

23405

24
B2 +

22709

576

)
+ g4

(
87549

4
B5 +

50715

2
B3 +

217663

64
B

)
− . . .

• simple relation:

∂EDW

∂B
= −6B g − 3g2∂ADW

∂g



Connecting Perturbative/Non-Perturbative Sectors

• similar relations for Sine-Gordon, Fokker-Planck (SUSY DW)
and O(d) AHO, ...

• general expression:

∂E

∂B
= − g

2S

(
2B + g

∂A

∂g

)

• reason: consistency with resurgent trans-series structure at
higher non-perturbative order

• implication: non-perturbative function A(B, g) completely
determined by perturbative expression E(B, g)



Uniform WKB and Resurgent Trans-Series for Eigenvalues

f(g2) =

∞∑

n=0

∞∑

k=0

k−1∑

l=0

an,k,l g
2n

[
exp

(
− S
g2

)]k [
log

(
− 1

g2

)]l

= Epert(g
2) + e−S/g

2
f1(g2)

+e−2S/g2

(
f2(g2) + ln

(
− 1

g2

)
f̃2(g2)

)

+e−3S/g2

(
f3(g2) + ln

(
− 1

g2

)
f̃3(g2) + ln2

(
− 1

g2

)
f̄3(g2)

)

+ . . .

uniform WKB ⇒
(i) all fi come from a single function F
(ii) moreover can be deduced immediately from E(N, g2)



Uniform WKB and Resurgent Trans-Series for Eigenvalues

Zinn-Justin/Jentschura: generate entire trans-series from
(i) perturbative expansion E = E(ν, g2)
(ii) single-instanton fluctuation function F(ν, g2)
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

Dunne/Ünsal: perturbation theory generates everything!

F(ν, g2) = exp

[
S

∫ g2

0

dg2

g4

(
∂E

∂ν
− 1 +

(
ν + 1

2

)
g2

S

)]

dramatic implication: all orders of the multi-instanton
trans-series are encoded in perturbation theory of the
fluctuations about the perturbative vacuum !!!

why ? turn to path integrals ....



Lecture 4

I Darboux’s theorem and resurgent steepest descents analysis

I QM resurgence in terms of saddles

I analytic continuation and complex saddles

I non-perturbative physics without instantons



Analytic Continuation of Path Integrals

The shortest path between two truths in the real domain
passes through the complex domain

Jacques Hadamard, 1865 - 1963



Analytic Continuation of Path Integrals: Darboux Theorem

• zero dimensions: all-orders steepest descents of contour
integrals (Berry/Howls: hyperasymptotics)

I(n)(k) =

∫

Cn

dz e−k f(z)

• separate out fluctuations:

I(n)(k) =
1√
k
e−k fn T (n)(k) , T (n)(k) ≡

√
k

∫

Cn

dz e−k (f(z)−fn)

• asymptotic expansion of fluctuations about the saddle n:

T (n)(k) ∼
∞∑

r=0

T
(n)
r

kr



Analytic Continuation of Path Integrals: Darboux Theorem

• singulant variable: u ≡ k (f(z)− fn)



Analytic Continuation of Path Integrals: Darboux Theorem

• singulant variable:
u ≡ k (f(z)− fn)

• noting double-valuedness

T (n)(k) =

∫ ∞

0
du

e−u√
k

(
1

f ′(z+(u))
− 1

f ′(z−(u))

)

=
1

2π i

∫ ∞

0
du

e−u√
u

∮

Γn

dz

√
f(z)− fn

f(z)− fn − u/k

• now expand in 1
k ⇒ fluctuation coefficients:

T (n)
r =

(
r − 1

2

)
!

2π i

∮

Γn

dz
1

(f(z)− fn)r+1/2

• universal factorial divergence of fluctuations (Darboux)



Analytic Continuation of Path Integrals: Darboux Theorem

• deforming contours:
∮

Γn

dz(...) =
∑

m adjacent

(−1)γnm
∫

Cm

dz (...)



Analytic Continuation of Path Integrals: Darboux Theorem

deforming contours:



Analytic Continuation of Path Integrals: Darboux Theorem

• deforming contours:
∮

Γn

dz(...) =
∑

m adjacent

(−1)γnm
∫

Cm

dz (...)

• new singulant variables along each contour Cm:

T (n)(k) =
1

2π i

∑

m

(−1)γnm
∫ ∞

0

dv

v

e−v

1− v/(k Fnm)
T (m)

(
v

Fnm

)

• exact resurgent relation between fluctuations about nth

saddle and about neighboring saddles m

expand fluctuations T (n)(k) =
∑

r
T

(n)
r
kr ⇒

T (n)
r =

(r − 1)!

2π i

∑

m

(−1)γnm

(Fnm)r

[
T

(m)
0 +

Fnm
(r − 1)

T
(m)
1 +

(Fnm)2

(r − 1)(r − 2)
T

(m)
2 + . . .

]



Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slightly different guise, as it were - at
their singularities

J. Écalle, 1980

n

m



Analytic Continuation of Path Integrals: Darboux Theorem

zero dim. partition function for periodic potential
V (z) = sin2(z):

I(k) =

∫ π

0
dz e−k sin2(z)

two saddle points: z0 = 0 and z1 = π
2 .

IĪ
vacuum vacuum

min. min.saddle



Analytic Continuation of Path Integrals: Darboux Theorem

• zero dim. partition function for periodic potential
V (z) = sin2(z):

I(k) =

∫ π

0
dz e−k sin2(z)

• two saddle points: z0 = 0 and z1 = π
2 .

I(0)(k) =
1√
k
T (0)(k) , T (0)(k) =

√
k

∫ ∞

0

du√
u

e−k u√
1− u

=

∞∑

n=0

Γ
(
n+ 1

2

)2
√
π Γ(n+ 1)

1

kn

• factorially divergent, as expected, and non-alternating

I(1)(k) =
e−k√
k
T (1)(k) , T (1)(k) = i

√
k

∫ ∞

0

du√
u

e−k u√
1 + u

= i

∞∑

n=0

(−1)n Γ
(
n+ 1

2

)2
√
π Γ(n+ 1)

1

kn



Analytic Continuation of Path Integrals: Darboux Theorem

• large order behavior about saddle z0:

T (0)
r =

Γ
(
r + 1

2

)2
√
π Γ(r + 1)

∼ (r − 1)!√
π

(
1− 1

4r
+

1

32r2
+

1

128r3
+ . . .

)

∼ (r − 1)!√
π

(
1− 1/4

(r − 1)
+

9/32

(r − 1)(r − 2)
− 75/128

(r − 1)(r − 2)(r − 3)
+ . . .

)

• low order coefficients about saddle z1:

T (1)(k) ∼ i√π
(

1− 1

4k
+

9

32k2
− 75

128k3
+ . . .

)

• fluctuations about the two saddles are explicitly related

• resurgence at work!



Resurgence in Path Integrals: “Functional Darboux Theorem”

• periodic potential: V (x) = 1
g2 sin2(g x)

• vacuum saddle point

cn ∼ n!

(
1− 5

2
· 1

n
− 13

8
· 1

n(n− 1)
− . . .

)

• instanton/anti-instanton saddle point:

ImE ∼ π e−2 1
2g2

(
1− 5

2
g2 − 13

8
g4 − . . .

)

• double-well potential: V (x) = x2(1− gx)2

• vacuum saddle point

cn ∼ 3nn!

(
1− 53

6
· 1

3
· 1

n
− 1277

72
· 1

32
· 1

n(n− 1)
− . . .

)

• instanton/anti-instanton saddle point:

ImE ∼ π e−2 1
6g2

(
1− 53

6
g2 − 1277

72
g4 − . . .

)



Resurgence in Path Integrals: “Functional Darboux Theorem”

resurgence: fluctuations about the instanton/anti-instanton
saddle are determined by those about the vacuum saddle

“functional Darboux theorem”



Resurgence from path integral perspective

• semiclassical expansion of path integral

Z(g2) =

∫
Dφ e−S[φ] ≈

∑

saddles k

Fk(g
2) e
− 1
g2
Sk

Resurgence: asymptotic expansions around different saddles of
path integral influence one another

• in principle exact



Analytic Continuation of Path Integrals: Lefschetz Thimbles

Z =

∫
dx e−S(x)

• critical points (saddle points): ∂S/∂z = 0

• steepest descent contour: ImS(z) = constant

• contour flow-time parameter t:

d

dt
ImS(z) =

1

2i

(
∂S

∂z
ż − ∂S̄

∂z̄
˙̄z

)
,

d

dt
ReS(z) =

1

2

(
∂S

∂z
ż +

∂S̄

∂z̄
˙̄z

)

• flow along a steepest decent path:

ż =
∂S̄

∂z̄
⇒ d

dt
ImS(z) = 0 ,

d

dt
ReS(z) =

∣∣∣∣
∂S

∂z

∣∣∣∣
2

> 0

• monotonic in real part

Z = e−Simag(x)

∫

Γ
dz e−Sreal(z)



Analytic Continuation of Path Integrals: Lefschetz Thimbles

functional version: path integral
∫
DAe−

1
g2

(Sreal[A]+i Simag[A]) ∼
∑

thimbles k

e
− i
g2
Simag[A]

∫

Γk

DAe−
1
g2
Sreal[A]

thimble = functional [configurational] steepest descents
contour

remaining path integral has real measure: amenable to
(i) Monte Carlo
(ii) semiclassical expansion (resurgent relations between
thimbles)

resurgence: asymptotic expansions about different saddles are
closely related

requires a deeper understanding of complex configurations and
analytic continuation of path integrals ...



Path integrals with complex saddles: “ghost instantons”

• elliptic potential: (Basar, GD, Ünsal, arXiv:1308.1108)

V (z|m) = sd2(x|m)

interpolates between Sine-Gordon (m = 0 and Sinh-Gordon
(m = 1)

http://inspirehep.net/record/1246808?ln=en


Path integrals with complex saddles: zero dim. prototype

V (z|m) =
1

g2
sd2(g z|m)

• duality property:

V (z|m)|g2 = V (z|1−m)|−g2

• perturbative series
∑

n an(m)g2n satisfies duality:

an(m) = (−1)nan(1−m)

d=0 partition function:

Z(g2|m) =
1

g
√
π

∫ K

−K
dz e

− 1
g2

sd2(z|m)



Path integrals with complex saddles: zero dim. prototype

Z(g2|0)
∣∣
pert

= 1 +
g2

4
+

9g4

32
+

75g6

128
+

3675g8

2048
+

59535g10

8192
+ . . .

Z
(
g2|1

)∣∣
pert

= 1− g2

4
+

9g4

32
− 75g6

128
+

3675g8

2048
− 59535g10

8192
+ . . .

Z
(
g2

∣∣∣∣
1

4

)∣∣∣∣
pert

= 1 +
g2

8
+

9g4

64
+

105g6

512
+

1995g8

4096
+

48195g10

32768
+ . . .

Z
(
g2

∣∣∣∣
3

4

)∣∣∣∣
pert

= 1− g2

8
+

9g4

64
− 105g6

512
+

1995g8

4096
− 48195g10

32768
+ . . .

Z
(
g2

∣∣∣∣
1

2

)∣∣∣∣
pert

= 1 + 0g2 +
3g4

32
+ 0g6 +

315g8

2048
+ 0g10 + . . .

• duality relation: Z(g2|m) = Z(−g2|1−m)

non-alternating for m < 1
2 alternating for m > 1

2

puzzles: Borel summable? “instantons” ?



Path integrals with complex saddles: zero dim. prototype

Z(g2|m) =
2

g
√
π

∫ K

0
dz e

− 1
g2

sd2(z|m)

• large-order behavior about 0 from saddle point B = K:

SB =
1

1−m ⇒ an ∼
(n− 1)!

πS
n+1/2
B

• compare with actual series:
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disaster !



Path integrals with complex saddles: zero dim. prototype

resolution: another saddle off the integration path!

Saddle A Saddle B

Saddle C Pole

z

0 K 2 K

0

i K
¢

2 i K
¢

SC = −1/m ⇒ an ∼
(n− 1)!

π
(S

n+1/2
B + S

n+1/2
C )



Path integrals with complex saddles: zero dim. prototype

resolution: another saddle off the integration path!

Saddle A Saddle B

Saddle C Pole

z

0 K 2 K

0

i K
¢

2 i K
¢

SC = −1/m ⇒ an ∼
(n− 1)!

π
(S

n+1/2
B + (−1)n|SC |n+1/2)



Path integrals with complex saddles: zero dim. prototype

an ∼
(n− 1)!

π
(S

n+1/2
B + (−1)n|SC |n+1/2)

⇒ improved asymptotics:

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

à

à

à à à à à à à à à à à à à à à à à à à à à à à à à à

ì
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0 5 10 15 20 25 30
n

0.8

0.9

1.0

1.1
ratio Hd=0L

conclusion: perturbation series feels all saddles, both real and
complex



Path integrals with complex saddles: zero dim. prototype

the bigger picture:
• associated with each critical point zi, there is a unique
integration cycle Ji, called a Lefschetz thimble, along which the
phase remains stationary

• around each saddle there is a contribution of the form:

I(k)(ξ|m) =
1√
π

√
ξ

∫

Jk
dz e−ξ sd

2(z|m)

• expansions around different saddles are connected via

exact resurgence relation:

I(A)

(
1

g2
|m
)

=
2

2πi

∑

k∈{B,C}

∫ ∞

0

dv

v

1

1− g2 v
I(k)(v|m)



Path integrals with complex saddles: zero dim. prototype

• most general expansion is a three-term trans-series

ZC(g2|m) ≡ σA ΦA(g2) + σB e
−SB/g2

ΦB(g2) + σC e
−SC/g2

ΦC(g2)

• coefficients of perturbative expansions are connected

a(A)
n (m) =

∑

j=0

(n− j − 1)!

π

(
a

(B)
j (m)

S n−j
B

+
a

(C)
j (m)

S n−j
C

)

PolePole

PolePole

A B

C

B

C

z



Path integrals with complex saddles: zero dim. prototype

view from the Borel plane:
u plane

m=0

SB = 1 � m 'SC =-1 � m m=1�4

m=1�2

m=3�4

m=1

• ‘distance’ in Borel plane, ∆S = Si − Sj (“relative action”)
controls divergence of perturbation series Φj

• m > 1/2: closest singularity on R− ⇔ alternating series
ΦA

• mimics structure of both UV and IR renormalons



Ghost Instantons: Quantum Mechanical Path Integrals

quantum mechanics: ordinary integral −→ path integral

Z(g2|m) =

∫
Dφ e−S[φ] =

∫
Dφ e−

∫
dτ
(

1
4
φ̇2+ 1

g2
sd2(g φ|m)

)

• find real and ghost instantons

I
I

I I

G

G

GG

z

0 2 K

2 i K
¢

• actions:

SI(m)

g2
=

2 sin−1(
√
m)

g2
√
mm′

≥ 2

g2
,

SG(m)

g2
=

2 sin−1(
√
m′)

g2
√
mm′

≤ − 2

g2



Ghost Instantons: Quantum Mechanical Path Integrals

E(0)(g2|0) = 1− g2

4
− g4

16
− 3g6

64
− 53g8

1024
− 297g10

4096
− . . .

E(0)(g2|1) = 1 +
g2

4
− g4

16
+

3g6

64
− 53g8

1024
− 297g10

4096
− . . .

E(0)

(
g2

∣∣∣∣
1

4

)
= 1− g2

8
− 11g4

128
− 3g6

128
− 889g8

32768
− 225g10

8192
− . . .

E(0)

(
g2

∣∣∣∣
3

4

)
= 1 +

g2

8
− 11g4

128
+

3g6

128
− 889g8

32768
+

225g10

8192
− . . .

E(0)

(
g2

∣∣∣∣
1

2

)
= 1 + 0g2 − 3g4

32
+ 0g6 − 39g8

2048
+ 0g10 − . . .

• duality relation: E(0)(g2|m) = E(0)(−g2|1−m)

non-alternating for m < 1
2 alternating for m > 1

2

• very similar to zero-dimensional protoype!



Ghost Instantons: Quantum Mechanical Path Integrals

• large order growth of QM perturbation theory
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n!

(
1

(SIĪ(m))n+1
− (−1)n+1

|SGḠ(m)|n+1
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Ghost Instantons: Quantum Mechanical Path Integrals

the bigger picture:

• vacuum “talks to” the topologically trivial sector:

. . .↔ [G2Ḡ2] ↔ [GḠ] ↔ pert.vac ↔ [IĪ] ↔ [I2Ī2]↔ . . .

• QM trans-series:

Z(g2|m) =

{
Φ0(g2) + [IĪ]−Φ[IĪ](g

2) + [I2Ī2]−Φ[I2Ī2](g
2) + . . . −π < arg(g2) < 0

Φ0(g2) + [IĪ]+Φ[IĪ](g
2) + [I2Ī2]+Φ[I2Ī2](g

2) + . . . 0 < arg(g2) < π

• ambiguities cancel ad-infinitum (resurgence!)

Im
(
S0±Φ0 + [II]0±ReS0Φ[IĪ]

)
= 0 up to O(e−4SI )

• Similar structure for one instanton, etc.. sector

. . .↔ [IG2Ḡ2] ↔ [IGḠ] ↔ [I] ↔ [I2Ī] ↔ [I3Ī2]↔ . . .



Ghost Instantons: Quantum Mechanical Path Integrals

Borel plane structure:

u plane
m=0

S
I I

2 S
I I

3 S
I I

4 S
I I

S
G G

2 S
G G

m=1�4

m=1�2

m=3�4

m=1

Mimics IR and UV renormalon structure of asymptotically free
QFT



Non-perturbative Physics Without Instantons

e.g, 2d Principal Chiral Model:
(Cherman, Dorigoni, GD, Ünsal, 1308.0127)

Sb =
N

2λ

∫
d2x tr ∂µU∂

µU †, U ∈ SU(N),

• non-Borel-summable perturbation theory due to IR
renomalons

• but, the theory has no instantons !

resolution: there exist non-BPS saddle point solutions to the
second-order classical Euclidean equations of motion:
“unitons”

∂µ

(
U †∂µ U

)
= 0

http://inspirehep.net/record/1246022?ln=en


Non-perturbative Physics Without Instantons: Principal Chiral
Model

• “unitons”: U ≡ (1− 2 P)

∂µ

(
U †∂µ U

)
= 0 → [P, ∂2

µP] = 0

• general solutions to CPN−1 model (Din/Zakrzewski)

• simplest untions: from CPN−1 instantons

• “fractons”: twisted & fractionalized solutions in PCM

N fundamental fractons, U(z, z̄) = eiπ/N (1− 2P),

Pij =
viv
†
j

v†·v

SF =
8π

g2N



Non-perturbative Physics Without Instantons: Principal Chiral
Model

SU(2) fractons



Non-perturbative Physics Without Instantons: Principal Chiral
Model

SU(3) and SU(4) fractons



Non-perturbative Physics Without Instantons: Principal Chiral
Model

Fi ∼ e−
8π(µi+1−µi)

g2 ∼ e−
8π
g2N , U =

N∏

i=1

Fi

• perturbation theory: IR renormalon singularities on positive
Borel axis

t+k = 8πk/N = k[g2SU ]/β0, k ∈ Z+

• ambiguous lateral Borel sum:

S0±E(g2) = <B0 ∓ i
32π

g2N
e
− 16π
g2N

• non-perturbative fracton/anti-fracton amplitude:

[FiF̄i]θ=0± =

[
log

(
g2N

16π

)
− γ
]

16

g2N
e
− 16π
g2 N ± i 32π

g2N
e
− 16π
g2 N



Non-perturbative Physics Without Instantons

Yang-Mills, CPN−1, PCM, ... all have non-BPS solutions with
finite action

• “unstable”: negative modes of fluctuation operator

• what do these mean ?

resurgence: ambiguous imaginary non-perturbative terms should
cancel ambiguous imaginary terms coming from lateral Borel
sums of perturbation theory

∫
DAe−

1
g2
S[A]

=
∑

all saddles

e
− 1
g2
S[Asaddle] × (fluctuations)× (qzm)



Non-perturbative Physics Without Instantons: Yang-Mills

4d Yang-Mills: SYM = 1
2

∫
d4x tr (FµνFµν)

• Bogomolny factorization:

SYM =
1

4

∫
d4x tr

{(
Fµν ∓ F̃µν

)2
± 2FµνF̃µν

}

• classical equations of motion:

DµFµν = 0 −→ Fµν = ±F̃µν

• “instantons”: minima of classical action

• non-BPS finite action saddle-points: Sibner, Sibner,
Uhlenbeck (SU(2)): locally m instantons & m anti-instantons,
m ∈ Z ≥ 2

• ansatz constructions for SU(n), n ≥ 3

• solutions ‘unstable’ : negative modes



Non-perturbative Physics Without Instantons: CPN−1

(Dabrowski, GD, arXiv:1306.0921)

Non-self-dual Solutions in CPN−1

S =

∫
d2x

[
1

2

∣∣∣Dµn± iεµνDνn
∣∣∣
2
∓ iεµν (Dνn)†Dµn

]

• rank-1 projector representation:

P ≡ nn †

P2 = P = P†, TrP = 1

action S = 2

∫
d2xTr [∂zP ∂z̄P]

charge Q = 2

∫
d2xTr

[
P ∂z̄P ∂zP− P ∂zP ∂z̄P

]

http://inspirehep.net/record/1237116?ln=en


Non-perturbative Physics Without Instantons: CPN−1

• first-order instanton equations:

Dµn = ± iεµνDνn

∂z̄P P = 0 (instanton) , ∂zP P = 0 (anti-instanton)

• solution: holomorphic projector P = ω ω†
ω†ω , with ω = ω(z)

second-order classical equations:

DµDµn− (n† ·DµDµn)n = 0 or [∂z∂z̄P , P] = 0

• non-BPS solutions generated from instantons:

Z+ : ω → Z+ω ≡ ∂z ω−
(
ω† ∂z ω

)

ω†ω
ω , Z+ : n→ Z+n ≡

Z+ω

|Z+ω|

ω(0)
Z+−−−→ ω(1)

Z+−−−→ · · · Z+−−−→ ω(k)
Z+−−−→ · · · ω(N−1)

Z+−−−→ 0



Non-perturbative Physics Without Instantons: CPN−1



Non-perturbative Physics Without Instantons: CPN−1

• non-BPS solutions are ‘unstable’: e.g.

n→ ñ = n
√

1− φ†φ+ φ , φ = Dzn ; φ† · n = 0

• change in action is manifestly negative:

δS = −
∫
d2x

(
Tr
[
(Dzn)†Dzn (Dz̄n)†Dz̄n

]
+ Tr

[
(Dz̄n)†Dzn (Dzn)†Dz̄n

])



Non-perturbative Physics Without Instantons: CPN−1

physical origin of negative modes:

• single CPN−1 instanton: 2N parameters: i.e. 2N zero
modes

• Q = 2 CPN−1 instanton: 4N parameters: i.e. 4N zero
modes

• mapped non-BPS solution also has 4N parameters: i.e. 4N
zero modes

• but, “looks like” 2 instantons and 2 anti-instantons ⇒ 8N zero
modes

⇒ 4N zero modes are lifted at finite separation

some become negative modes



Conclusions

• Resurgence systematically unifies perturbative and
non-perturbative world

• there is extra ‘magic’ in perturbation theory

• IR renormalon puzzle in asymptotically free QFT

• multi-instanton physics from perturbation theory

• basic property of steepest descents expansions

• basic property of complex differential equations

• trans-series: sectors are inter-related

• resurgence triangle: network of connections

• moral: consider all saddles, including non-BPS

• resurgence required for analytic continuation



Open Problems

• Resurgence in Chern-Simons theories, Euler-Heisenberg,
dS/AdS, exact S-matrices, matrix models, topological strings,
integrability, localization, ...

• nonlinear differential equations
• natural path integral construction

• analytic continuation of path integrals

• ODE/IM correspondence

• relating strong- and weak-coupling expansions: dualities

• relation to SUSY and extended SUSY

• . . .
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