A Beginners' Guide to Resurgence and Trans-series in Quantum Theories

Gerald Dunne

University of Connecticut

Recent Developments in Semiclassical Probes of Quantum Field Theories
UMass Amherst ACFI, March 17-19, 2016

GD \& Mithat Ünsal, reviews: 1511.05977, 1601.03414
GD, lectures at CERN 2014 Winter School
GD, lectures at Schladming 2015 Winter School

Lecture 1

- motivation: physical and mathematical
- trans-series and resurgence
- divergence of perturbation theory in QM
- basics of Borel summation
- the Bogomolny/Zinn-Justin cancellation mechanism
- towards resurgence in QFT
- effective field theory: Euler-Heisenberg effective action

Physical Motivation

- infrared renormalon puzzle in asymptotically free QFT
- non-perturbative physics without instantons: physical meaning of non-BPS saddles
- "sign problem" in finite density QFT
- exponentially improved asymptotics

$\underline{\text { Bigger Picture }}$

- non-perturbative definition of non-trivial QFT, in the continuum
- analytic continuation of path integrals
- dynamical and non-equilibrium physics from path integrals
- uncover hidden 'magic' in perturbation theory

Physical Motivation

- what does a Minkowski path integral mean?

$$
\int \mathcal{D} A \exp \left(\frac{i}{\hbar} S[A]\right) \quad \text { versus } \quad \int \mathcal{D} A \exp \left(-\frac{1}{\hbar} S[A]\right)
$$

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{1}{3} t^{3}+x t\right)} d t \sim \begin{cases}\frac{e^{-\frac{2}{3} x^{3 / 2}}}{2 \sqrt{\pi} x^{1 / 4}} & , \quad x \rightarrow+\infty \\ \frac{\sin \left(\frac{2}{3}(-x)^{3 / 2}+\frac{\pi}{4}\right)}{\sqrt{\pi}(-x)^{1 / 4}} & , \quad x \rightarrow-\infty\end{cases}
$$

Physical Motivation

- what does a Minkowski path integral mean?

$$
\int \mathcal{D} A \exp \left(\frac{i}{\hbar} S[A]\right) \quad \text { versus } \quad \int \mathcal{D} A \exp \left(-\frac{1}{\hbar} S[A]\right)
$$

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{1}{3} t^{3}+x t\right)} d t \sim \begin{cases}\frac{e^{-\frac{2}{3} x^{3 / 2}}}{2 \sqrt{\pi} x^{1 / 4}} & , \quad x \rightarrow+\infty \\ \frac{\sin \left(\frac{2}{3}(-x)^{3 / 2}+\frac{\pi}{4}\right)}{\sqrt{\pi}(-x)^{1 / 4}} & , \quad x \rightarrow-\infty\end{cases}
$$

Mathematical Motivation

Resurgence: 'new' idea in mathematics (Écalle, 1980; Stokes, 1850) $\underline{\text { resurgence }}=$ unification of perturbation theory and non-perturbative physics

- perturbation theory generally \Rightarrow divergent series
- series expansion \longrightarrow trans-series expansion
- trans-series 'well-defined under analytic continuation'
- perturbative and non-perturbative physics entwined
- applications: ODEs, PDEs, fluids, QM, Matrix Models, QFT, String Theory, ...
- philosophical shift:
view semiclassical expansions as potentially exact

Resurgent Trans-Series

- trans-series expansion in QM and QFT applications:

$$
f\left(g^{2}\right)=\sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=1}^{k-1} \underbrace{c_{k, l, p} g^{2 p}}_{\text {perturbative fluctuations }} \underbrace{\left(\exp \left[-\frac{c}{g^{2}}\right]\right)^{k}}_{\text {k-instantons }} \underbrace{\left(\ln \left[\pm \frac{1}{g^{2}}\right]\right)^{l}}_{\text {quasi-zero-modes }}
$$

- J. Écalle (1980): closed set of functions:
$($ Borel transform $)+($ analytic continuation $)+($ Laplace transform $)$
- trans-monomial elements: $g^{2}, e^{-\frac{1}{g^{2}}}, \ln \left(g^{2}\right)$, are familiar
- "multi-instanton calculus" in QFT
- new: analytic continuation encoded in trans-series
- new: trans-series coefficients $c_{k, l, p}$ highly correlated
- new: exponentially improved asymptotics

Resurgence

resurgent functions display at each of their singular points a behaviour closely related to their behaviour at the origin. Loosely speaking, these functions resurrect, or surge up - in a slightly different guise, as it were - at their singularities
J. Écalle, 1980

Perturbation theory

- perturbation theory generally \rightarrow divergent series e.g. QM ground state energy: $E=\sum_{n=0}^{\infty} c_{n}$ (coupling) n
- Zeeman: $c_{n} \sim(-1)^{n}(2 n)$!
- Stark: $c_{n} \sim(2 n)$!
- cubic oscillator: $c_{n} \sim \Gamma\left(n+\frac{1}{2}\right)$
- quartic oscillator: $c_{n} \sim(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)$
- periodic Sine-Gordon (Mathieu) potential: $c_{n} \sim n$!
- double-well: $c_{n} \sim n$!
note generic factorial growth of perturbative coefficients

Asymptotic Series vs Convergent Series

$$
f(x)=\sum_{n=0}^{N-1} c_{n}\left(x-x_{0}\right)^{n}+R_{N}(x)
$$

convergent series:

$$
\left|R_{N}(x)\right| \rightarrow 0 \quad, \quad N \rightarrow \infty \quad, \quad x \quad \text { fixed }
$$

asymptotic series:

$$
\left|R_{N}(x)\right| \ll\left|x-x_{0}\right|^{N} \quad, \quad x \rightarrow x_{0} \quad, \quad N \quad \text { fixed }
$$

$\longrightarrow \quad$ "optimal truncation":
truncate just before the least term (x dependent!)

Asymptotic Series: optimal truncation \& exponential

precision

$$
\sum_{n=0}^{\infty}(-1)^{n} n!x^{n} \sim \frac{1}{x} e^{\frac{1}{x}} E_{1}\left(\frac{1}{x}\right)
$$

optimal truncation: $N_{\mathrm{opt}} \approx \frac{1}{x} \Rightarrow$ exponentially small error

$$
\left.\left|R_{N}(x)\right|_{N \approx 1 / x} \approx N!x^{N}\right|_{N \approx 1 / x} \approx N!N^{-N} \approx \sqrt{N} e^{-N} \approx \frac{e^{-1 / x}}{\sqrt{x}}
$$

$$
(x=0.1)
$$

$$
(x=0.2)
$$

Borel summation: basic idea

write $n!=\int_{0}^{\infty} d t e^{-t} t^{n}$
alternating factorially divergent series:

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} n!g^{n}=\int_{0}^{\infty} d t e^{-t} \frac{1}{1+g t} \tag{?}
\end{equation*}
$$

integral convergent for all $g>0$: "Borel sum" of the series

Borel Summation: basic idea

$$
\sum_{n=0}^{\infty}(-1)^{n} n!x^{n}=\int_{0}^{\infty} d t e^{-t} \frac{1}{1+x t}
$$

Borel summation: basic idea

write $n!=\int_{0}^{\infty} d t e^{-t} t^{n}$
non-alternating factorially divergent series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} n!g^{n}=\int_{0}^{\infty} d t e^{-t} \frac{1}{1-g t} \tag{??}
\end{equation*}
$$

pole on the Borel axis!

Borel summation: basic idea

write $n!=\int_{0}^{\infty} d t e^{-t} t^{n}$
non-alternating factorially divergent series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} n!g^{n}=\int_{0}^{\infty} d t e^{-t} \frac{1}{1-g t} \tag{??}
\end{equation*}
$$

pole on the Borel axis!

\Rightarrow non-perturbative imaginary part

$$
\pm \frac{i \pi}{g} e^{-\frac{1}{g}}
$$

but every term in the series is real !?!

Borel Summation: basic idea

Borel $\Rightarrow \mathcal{R} e\left[\sum_{n=0}^{\infty} n!x^{n}\right]=\mathcal{P} \int_{0}^{\infty} d t e^{-t} \frac{1}{1-x t}=\frac{1}{x} e^{-\frac{1}{x}} \operatorname{Ei}\left(\frac{1}{x}\right)$

Borel summation

Borel transform of series $f(g) \sim \sum_{n=0}^{\infty} c_{n} g^{n}$:

$$
\mathcal{B}[f](t)=\sum_{n=0}^{\infty} \frac{c_{n}}{n!} t^{n}
$$

new series typically has finite radius of convergence.
Borel resummation of original asymptotic series:

$$
\mathcal{S} f(g)=\frac{1}{g} \int_{0}^{\infty} \mathcal{B}[f](t) e^{-t / g} d t
$$

warning: $\mathcal{B}[f](t)$ may have singularities in (Borel) t plane

Borel singularities

avoid singularities on \mathbb{R}^{+}: directional Borel sums:

$$
\mathcal{S}_{\theta} f(g)=\frac{1}{g} \int_{0}^{e^{i \theta} \infty} \mathcal{B}[f](t) e^{-t / g} d t
$$

go above/below the singularity: $\theta=0^{ \pm}$
$\longrightarrow \quad$ non-perturbative ambiguity: $\pm \operatorname{Im}\left[\mathcal{S}_{0} f(g)\right]$
challenge: use physical input to resolve ambiguity

Borel summation: existence theorem (Nevanlinna \& Sokal)

$f(z)$ analytic in circle $C_{R}=\left\{z:\left|z-\frac{R}{2}\right|<\frac{R}{2}\right\}$

$$
f(z)=\sum_{n=0}^{N-1} a_{n} z^{n}+R_{N}(z) \quad, \quad\left|R_{N}(z)\right| \leq A \sigma^{N} N!|z|^{N}
$$

Borel transform

$$
B(t)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} t^{n}
$$

analytic continuation to

$$
\begin{aligned}
& S_{\sigma}=\left\{t:\left|t-\mathbb{R}^{+}\right|<1 / \sigma\right\} \\
& f(z)=\frac{1}{z} \int_{0}^{\infty} e^{-t / z} B(t) d t
\end{aligned}
$$

Borel summation in practice

$$
f(g) \sim \sum_{n=0}^{\infty} c_{n} g^{n} \quad, \quad c_{n} \sim \beta^{n} \Gamma(\gamma n+\delta)
$$

- alternating series: real Borel sum

$$
f(g) \sim \frac{1}{\gamma} \int_{0}^{\infty} \frac{d t}{t}\left(\frac{1}{1+t}\right)\left(\frac{t}{\beta g}\right)^{\delta / \gamma} \exp \left[-\left(\frac{t}{\beta g}\right)^{1 / \gamma}\right]
$$

- nonalternating series: ambiguous imaginary part
$\operatorname{Re} f(-g) \sim \frac{1}{\gamma} \mathcal{P} \int_{0}^{\infty} \frac{d t}{t}\left(\frac{1}{1-t}\right)\left(\frac{t}{\beta g}\right)^{\delta / \gamma} \exp \left[-\left(\frac{t}{\beta g}\right)^{1 / \gamma}\right]$
$\operatorname{Im} f(-g) \sim \pm \frac{\pi}{\gamma}\left(\frac{1}{\beta g}\right)^{\delta / \gamma} \exp \left[-\left(\frac{1}{\beta g}\right)^{1 / \gamma}\right]$

Resurgence and Analytic Continuation

another view of resurgence:
resurgence can be viewed as a method for making formal asymptotic expansions consistent with global analytic continuation properties
$\Rightarrow \quad$ "the trans-series really IS the function"
(question: to what extent is this true/useful in physics?)

Resurgence: Preserving Analytic Continuation

- zero-dimensional partition functions

$$
\begin{aligned}
Z_{1}(\lambda) & =\int_{-\infty}^{\infty} d x e^{-\frac{1}{2 \lambda} \sinh ^{2}(\sqrt{\lambda} x)}=\frac{1}{\sqrt{\lambda}} e^{\frac{1}{4 \lambda}} K_{0}\left(\frac{1}{4 \lambda}\right) \\
& \sim \sqrt{\frac{\pi}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 \lambda)^{n} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{n!\Gamma\left(\frac{1}{2}\right)^{2}} \quad \text { Borel-summable } \\
Z_{2}(\lambda) & =\int_{0}^{\pi / \sqrt{\lambda}} d x e^{-\frac{1}{2 \lambda} \sin ^{2}(\sqrt{\lambda} x)}=\frac{\pi}{\sqrt{\lambda}} e^{-\frac{1}{4 \lambda}} I_{0}\left(\frac{1}{4 \lambda}\right) \\
& \sim \sqrt{\frac{\pi}{2}} \sum_{n=0}^{\infty}(2 \lambda)^{n} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{n!\Gamma\left(\frac{1}{2}\right)^{2}} \quad \text { non-Borel-summable }
\end{aligned}
$$

- naively: $Z_{1}(-\lambda)=Z_{2}(\lambda)$

Resurgence: Preserving Analytic Continuation

- zero-dimensional partition functions

$$
\begin{aligned}
Z_{1}(\lambda) & =\int_{-\infty}^{\infty} d x e^{-\frac{1}{2 \lambda} \sinh ^{2}(\sqrt{\lambda} x)}=\frac{1}{\sqrt{\lambda}} e^{\frac{1}{4 \lambda}} K_{0}\left(\frac{1}{4 \lambda}\right) \\
& \sim \sqrt{\frac{\pi}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 \lambda)^{n} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{n!\Gamma\left(\frac{1}{2}\right)^{2}} \quad \text { Borel-summable } \\
Z_{2}(\lambda) & =\int_{0}^{\pi / \sqrt{\lambda}} d x e^{-\frac{1}{2 \lambda} \sin ^{2}(\sqrt{\lambda} x)}=\frac{\pi}{\sqrt{\lambda}} e^{-\frac{1}{4 \lambda}} I_{0}\left(\frac{1}{4 \lambda}\right) \\
& \sim \sqrt{\frac{\pi}{2}} \sum_{n=0}^{\infty}(2 \lambda)^{n} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{n!\Gamma\left(\frac{1}{2}\right)^{2}} \quad \text { non-Borel-summable }
\end{aligned}
$$

- naively: $Z_{1}(-\lambda)=Z_{2}(\lambda)$
- connection formula: $K_{0}\left(e^{ \pm i \pi}|z|\right)=K_{0}(|z|) \mp i \pi I_{0}(|z|)$

$$
\Rightarrow \quad Z_{1}\left(e^{ \pm i \pi} \lambda\right)=Z_{2}(\lambda) \mp i e^{-\frac{1}{2 \lambda}} Z_{1}(\lambda)
$$

Resurgence: Preserving Analytic Continuation

- Borel summation

$$
Z_{1}(\lambda)=\sqrt{\frac{\pi}{2}} \frac{1}{2 \lambda} \int_{0}^{\infty} d t e^{-\frac{t}{2 \lambda}}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ;-t\right)
$$

- directional Borel summation:

$$
\begin{aligned}
& Z_{1}\left(e^{i \pi} \lambda\right)-Z_{1}\left(e^{-i \pi} \lambda\right) \\
& =\sqrt{\frac{\pi}{2}} \frac{1}{2 \lambda} \int_{1}^{\infty} d t e^{-\frac{t}{2 \lambda}}\left[{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; t-i \varepsilon\right)-{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; t+i \varepsilon\right)\right] \\
& =-(2 i) \sqrt{\frac{\pi}{2}} \frac{1}{2 \lambda} e^{-\frac{1}{2 \lambda}} \int_{0}^{\infty} d t e^{-\frac{t}{2 \lambda}}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ;-t\right) \\
& =-2 i e^{-\frac{1}{2 \lambda}} Z_{1}(\lambda)
\end{aligned}
$$

$$
\left(\operatorname{Im}\left[{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; t-i \varepsilon\right)\right]={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-t\right)\right)
$$

- connection formula: $Z_{1}\left(e^{ \pm i \pi} \lambda\right)=Z_{2}(\lambda) \mp i e^{-\frac{1}{2 \lambda}} Z_{1}(\lambda)$

Resurgence: Preserving Analytic Continuation

Stirling expansion for $\psi(x)=\frac{d}{d x} \ln \Gamma(x)$ is divergent
$\psi(1+z) \sim \ln z+\frac{1}{2 z}-\frac{1}{12 z^{2}}+\frac{1}{120 z^{4}}-\frac{1}{252 z^{6}}+\cdots+\frac{174611}{6600 z^{20}}-\ldots$

- functional relation: $\psi(1+z)=\psi(z)+\frac{1}{z}$ formal series $\quad \Rightarrow \quad \operatorname{Im} \psi(1+i y) \sim-\frac{1}{2 y}+\frac{\pi}{2}$

Resurgence: Preserving Analytic Continuation

Stirling expansion for $\psi(x)=\frac{d}{d x} \ln \Gamma(x)$ is divergent
$\psi(1+z) \sim \ln z+\frac{1}{2 z}-\frac{1}{12 z^{2}}+\frac{1}{120 z^{4}}-\frac{1}{252 z^{6}}+\cdots+\frac{174611}{6600 z^{20}}-\ldots$

- functional relation: $\psi(1+z)=\psi(z)+\frac{1}{z}$ formal series $\Rightarrow \operatorname{Im} \psi(1+i y) \sim-\frac{1}{2 y}+\frac{\pi}{2}$
- reflection formula: $\psi(1+z)-\psi(1-z)=\frac{1}{z}-\pi \cot (\pi z)$

$$
\Rightarrow \quad \operatorname{Im} \psi(1+i y) \sim-\frac{1}{2 y}+\frac{\pi}{2}+\pi \sum_{k=1}^{\infty} e^{-2 \pi k y}
$$

"raw" asymptotics inconsistent with analytic continuation resurgence fixes this

Transseries Example: Painlevé II (matrix models, fluids ...)

$$
w^{\prime \prime}=2 w^{3}(x)+x w(x) \quad, \quad w \rightarrow 0 \text { as } x \rightarrow+\infty
$$

- $x \rightarrow+\infty$ asymptotics: $w \sim \sigma \operatorname{Ai}(x)$
$\sigma=$ real transseries parameter (flucs Borel summable)

$$
w(x) \sim \sum_{n=0}^{\infty}\left(\sigma \frac{e^{-\frac{2}{3} x^{3 / 2}}}{2 \sqrt{\pi} x^{1 / 4}}\right)^{2 n+1} w^{(n)}(x)
$$

- $x \rightarrow-\infty$ asymptotics: $w \sim \sqrt{-\frac{x}{2}}$
transseries exponentials: $\exp \left(-\frac{2 \sqrt{2}}{3}(-x)^{3 / 2}\right)$ imag. part of transseries parameter fixed by cancellations

- Hastings-McLeod: $\sigma=1$ unique real solution on \mathbb{R}

Borel Summation and Dispersion Relations

cubic oscillator: $V=x^{2}+\lambda x^{3} \quad$ A. Vainshtein, 1964

$$
\begin{aligned}
E\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} d z \frac{E(z)}{z-z_{0}} \\
& =\frac{1}{\pi} \int_{0}^{R} d z \frac{\operatorname{Im} E(z)}{z-z_{0}} \\
=\sum_{n=0}^{\infty} z_{0}^{n} & \left(\frac{1}{\pi} \int_{0}^{R} d z \frac{\operatorname{Im} E(z)}{z^{n+1}}\right)
\end{aligned}
$$

Borel Summation and Dispersion Relations

cubic oscillator: $V=x^{2}+\lambda x^{3} \quad$ A. Vainshtein, 1964

$$
\begin{aligned}
E\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} d z \frac{E(z)}{z-z_{0}} \\
& =\frac{1}{\pi} \int_{0}^{R} d z \frac{\operatorname{Im} E(z)}{z-z_{0}} \\
=\sum_{n=0}^{\infty} z_{0}^{n} & \left(\frac{1}{\pi} \int_{0}^{R} d z \frac{\operatorname{Im} E(z)}{z^{n+1}}\right)
\end{aligned}
$$

$\mathrm{WKB} \Rightarrow \operatorname{Im} E(z) \sim \frac{a}{\sqrt{z}} e^{-b / z} \quad, \quad z \rightarrow 0$

$$
\Rightarrow \quad c_{n} \sim \frac{a}{\pi} \int_{0}^{\infty} d z \frac{e^{-b / z}}{z^{n+3 / 2}}=\frac{a}{\pi} \frac{\Gamma\left(n+\frac{1}{2}\right)}{b^{n+1 / 2}}
$$

Instability and Divergence of Perturbation Theory

quartic AHO: $\quad V(x)=\frac{x^{2}}{4}+\lambda \frac{x^{4}}{4}$
Bender/Wu, 1969

recall: divergence of perturbation theory in QM

e.g. ground state energy: $E=\sum_{n=0}^{\infty} c_{n}(\text { coupling })^{n}$

- Zeeman: $c_{n} \sim(-1)^{n}(2 n)$!
-Stark: $c_{n} \sim(2 n)$!
- quartic oscillator: $c_{n} \sim(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)$
- cubic oscillator: $c_{n} \sim \Gamma\left(n+\frac{1}{2}\right)$
- periodic Sine-Gordon potential: $c_{n} \sim n$!
- double-well: $c_{n} \sim n$!

recall: divergence of perturbation theory in QM

e.g. ground state energy: $E=\sum_{n=0}^{\infty} c_{n}\left(\right.$ coupling) ${ }^{n}$

- Zeeman: $c_{n} \sim(-1)^{n}(2 n)$!
stable
- Stark: $c_{n} \sim(2 n)$!
unstable
- quartic oscillator: $c_{n} \sim(-1)^{n} \Gamma\left(n+\frac{1}{2}\right)$
stable
- cubic oscillator: $c_{n} \sim \Gamma\left(n+\frac{1}{2}\right)$
unstable
- periodic Sine-Gordon potential: $c_{n} \sim n$!
stable ???
- double-well: $c_{n} \sim n$!
stable ???

Bogomolny/Zinn-Justin mechanism in QM

- degenerate vacua: double-well, Sine-Gordon, ... splitting of levels: a real one-instanton effect: $\Delta E \sim e^{-\frac{S}{g^{2}}}$

Bogomolny/Zinn-Justin mechanism in QM

- degenerate vacua: double-well, Sine-Gordon, ... splitting of levels: a real one-instanton effect: $\Delta E \sim e^{-\frac{S}{g^{2}}}$ surprise: pert. theory non-Borel summable: $c_{n} \sim \frac{n!}{(2 S)^{n}}$
- stable systems
- ambiguous imaginary part
- $\pm i e^{-\frac{2 S}{g^{2}}}$, a 2-instanton effect

Bogomolny/Zinn-Justin mechanism in QM

- degenerate vacua: double-well, Sine-Gordon, ...

1. perturbation theory non-Borel summable:
ill-defined/incomplete
2. instanton gas picture ill-defined/incomplete:
\mathcal{I} and $\overline{\mathcal{I}}$ attract

- regularize both by analytic continuation of coupling
\Rightarrow ambiguous, imaginary non-perturbative terms cancel !

Bogomolny/Zinn-Justin mechanism in QM

e.g., double-well: $V(x)=x^{2}(1-g x)^{2}$

$$
E_{0} \sim \sum_{n} c_{n} g^{2 n}
$$

- perturbation theory:

$$
c_{n} \sim-3^{n} n!\quad: \quad \text { Borel } \quad \Rightarrow \quad \operatorname{Im} E_{0} \sim \mp \pi e^{-\frac{1}{3 g^{2}}}
$$

- non-perturbative analysis: instanton: $g x_{0}(t)=\frac{1}{1+e^{-t}}$
- classical Eucidean action: $S_{0}=\frac{1}{6 g^{2}}$
- non-perturbative instanton gas:

$$
\operatorname{Im} E_{0} \sim \pm \pi e^{-2 \frac{1}{6 g^{2}}}
$$

- BZJ cancellation $\Rightarrow E_{0}$ is real and unambiguous

$$
\text { "resurgence" } \Rightarrow \text { cancellation to all orders }
$$

Decoding of Trans-series

$$
f\left(g^{2}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{q=0}^{k-1} c_{n, k, q} g^{2 n}\left[\exp \left(-\frac{S}{g^{2}}\right)\right]^{k}\left[\ln \left(-\frac{1}{g^{2}}\right)\right]^{q}
$$

- perturbative fluctuations about vacuum: $\sum_{n=0}^{\infty} c_{n, 0,0} g^{2 n}$
- divergent (non-Borel-summable): $c_{n, 0,0} \sim \alpha \frac{n!}{(2 S)^{n}}$
\Rightarrow ambiguous imaginary non-pert energy $\sim \pm i \pi \alpha e^{-2 S / g^{2}}$
- but $c_{0,2,1}=-\alpha$: BZJ cancellation!

Decoding of Trans-series

$$
f\left(g^{2}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{q=0}^{k-1} c_{n, k, q} g^{2 n}\left[\exp \left(-\frac{S}{g^{2}}\right)\right]^{k}\left[\ln \left(-\frac{1}{g^{2}}\right)\right]^{q}
$$

- perturbative fluctuations about vacuum: $\sum_{n=0}^{\infty} c_{n, 0,0} g^{2 n}$
- divergent (non-Borel-summable): $c_{n, 0,0} \sim \alpha \frac{n!}{(2 S)^{n}}$
\Rightarrow ambiguous imaginary non-pert energy $\sim \pm i \pi \alpha e^{-2 S / g^{2}}$
- but $c_{0,2,1}=-\alpha$: BZJ cancellation! pert flucs about instanton: $e^{-S / g^{2}}\left(1+a_{1} g^{2}+a_{2} g^{4}+\ldots\right)$ divergent:
$a_{n} \sim \frac{n!}{(2 S)^{n}}(a \ln n+b) \Rightarrow \pm i \pi e^{-3 S / g^{2}}\left(a \ln \frac{1}{g^{2}}+b\right)$
- 3-instanton: $e^{-3 S / g^{2}}\left[\frac{a}{2}\left(\ln \left(-\frac{1}{g^{2}}\right)\right)^{2}+b \ln \left(-\frac{1}{g^{2}}\right)+c\right]$

Decoding of Trans-series

$$
f\left(g^{2}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{q=0}^{k-1} c_{n, k, q} g^{2 n}\left[\exp \left(-\frac{S}{g^{2}}\right)\right]^{k}\left[\ln \left(-\frac{1}{g^{2}}\right)\right]^{q}
$$

- perturbative fluctuations about vacuum: $\sum_{n=0}^{\infty} c_{n, 0,0} g^{2 n}$
- divergent (non-Borel-summable): $c_{n, 0,0} \sim \alpha \frac{n!}{(2 S)^{n}}$
\Rightarrow ambiguous imaginary non-pert energy $\sim \pm i \pi \alpha e^{-2 S / g^{2}}$
- but $c_{0,2,1}=-\alpha$: BZJ cancellation! pert flucs about instanton: $e^{-S / g^{2}}\left(1+a_{1} g^{2}+a_{2} g^{4}+\ldots\right)$ divergent:
$a_{n} \sim \frac{n!}{(2 S)^{n}}(a \ln n+b) \Rightarrow \pm i \pi e^{-3 S / g^{2}}\left(a \ln \frac{1}{g^{2}}+b\right)$
- 3-instanton: $e^{-3 S / g^{2}}\left[\frac{a}{2}\left(\ln \left(-\frac{1}{g^{2}}\right)\right)^{2}+b \ln \left(-\frac{1}{g^{2}}\right)+c\right]$
resurgence: ad infinitum, also sub-leading large-order terms

Towards Resurgence in QFT

QM: divergence of perturbation theory due to factorial growth of number of Feynman diagrams

QFT: new physical effects occur, due to running of couplings with momentum

- asymptotically free QFT
\Rightarrow faster source of divergence: "renormalons" (IR \& UV)
QFT requires a path integral interpretation
- resurgence: 'generic' feature of steepest-descents approx.
- saddles, real and complex, BPS and non-BPS

Divergence of perturbation theory in QFT

- C. A. Hurst (1952); W. Thirring (1953): ϕ^{4} perturbation theory divergent
(i) factorial growth of number of diagrams
(ii) explicit lower bounds on diagrams
- F. J. Dyson (1952):
physical argument for divergence in QED pert. theory

$$
F\left(e^{2}\right)=c_{0}+c_{2} e^{2}+c_{4} e^{4}+\ldots
$$

Thus [for $e^{2}<0$] every physical state is unstable against the spontaneous creation of large numbers of particles. Further, a system once in a pathological state will not remain steady; there will be a rapid creation of more and more particles, an explosive disintegration of the vacuum by spontaneous polarization.

- suggests perturbative expansion cannot be convergent

Euler-Heisenberg Effective Action (1935)

- 1-loop QED effective action in uniform emag field
- the birth of effective field theory

$$
L=\frac{\vec{E}^{2}-\vec{B}^{2}}{2}+\frac{\alpha}{90 \pi} \frac{1}{E_{c}^{2}}\left[\left(\vec{E}^{2}-\vec{B}^{2}\right)^{2}+7(\vec{E} \cdot \vec{B})^{2}\right]+\ldots
$$

- encodes nonlinear properties of QED/QCD vacuum the electromagnetic properties of the vacuum can be described by a field-dependent electric and magnetic polarisability of empty space, which leads, for example, to refraction of light in electric fields or to a scattering of light by light

```
V.Weisskopf, 1936
```


QFT Application: Euler-Heisenberg 1935

Folgerungen aus der Diracschen Theorie des Positrons.

Von W. Heisenberg und H. Eulcr in Leipzig.
Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1955.)
Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische Feld zur Paarerzeugung neigt, eine Abänderung der Maxwellschen Gleichungen des Takuums. Diese Abänderungen werden für den speziellen Fall berechnet, in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in dem sich das Feld auf Strecken der Compton-Wellenlänge nur wenig ändert. Fs ergibt sich für das Feld eine Lagrange-Funktion:

$$
\begin{aligned}
& \mathcal{E}=\frac{1}{2}\left(\mathfrak{C}^{2}-\mathfrak{B}^{2}\right)+\frac{e^{2}}{h c} \int_{0}^{\infty} e^{-\eta} \frac{\mathrm{d} \eta}{\eta^{3}}\left\{i \eta^{2}(\mathbb{E} \mathfrak{B}) \cdot \frac{\cos \left(\frac{\eta}{|\mathcal{E} k|} \sqrt{\mathcal{E}^{2}-\mathfrak{B}^{2}+2 i(\mathbb{E} \mathfrak{B})}\right)+\mathrm{konj}}{\cos \left(\frac{\eta}{\left|\mathcal{C}_{k}\right|} \sqrt{\mathcal{E}^{2}-\mathfrak{B}^{2}+2 i(\mathbb{E} \mathfrak{B})}\right)-\mathrm{konj}}\right. \\
& \left.+\left|\mathfrak{C}_{k}\right|^{2}+\frac{\eta^{2}}{3}\left(\mathfrak{B}^{2}-\mathfrak{E}^{2}\right)\right\} . \\
& \binom{\mathfrak{E}, \mathfrak{B} \text { Kraft auf das Elektron. }}{\left|\mathfrak{E}_{k}\right|=\frac{m^{2} c^{3}}{e \hbar}=\frac{1}{{ }^{13} 7^{4}} \frac{e}{\left(e^{2} / m c^{2}\right)^{2}}={ }_{n} \text { Kritische Feldstärke }{ }^{4} .}
\end{aligned}
$$

- Borel transform of a (doubly) asymptotic series
- resurgent trans-series: analytic continuation $B \longleftrightarrow E$
- EH effective action \sim Barnes function $\sim \int \ln \Gamma(x)$

Euler-Heisenberg Effective Action: e.g., constant B field

$$
\begin{aligned}
S & =-\frac{B^{2}}{8 \pi^{2}} \int_{0}^{\infty} \frac{d s}{s^{2}}\left(\operatorname{coth} s-\frac{1}{s}-\frac{s}{3}\right) \exp \left[-\frac{m^{2} s}{B}\right] \\
S & =-\frac{B^{2}}{2 \pi^{2}} \sum_{n=0}^{\infty} \frac{\mathcal{B}_{2 n+4}}{(2 n+4)(2 n+3)(2 n+2)}\left(\frac{2 B}{m^{2}}\right)^{2 n+2}
\end{aligned}
$$

- characteristic factorial divergence

$$
c_{n}=\frac{(-1)^{n+1}}{8} \sum_{k=1}^{\infty} \frac{\Gamma(2 n+2)}{(k \pi)^{2 n+4}}
$$

- reconstruct correct Borel transform:

$$
\sum_{k=1}^{\infty} \frac{s}{k^{2} \pi^{2}\left(s^{2}+k^{2} \pi^{2}\right)}=-\frac{1}{2 s^{2}}\left(\operatorname{coth} s-\frac{1}{s}-\frac{s}{3}\right)
$$

Euler-Heisenberg Effective Action and Schwinger Effect

B field: QFT analogue of Zeeman effect
E field: QFT analogue of Stark effect
$B^{2} \rightarrow-E^{2}$: series becomes non-alternating
Borel summation $\Rightarrow \operatorname{Im} S=\frac{e^{2} E^{2}}{8 \pi^{3}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \exp \left[-\frac{k m^{2} \pi}{e E}\right]$

Euler-Heisenberg Effective Action and Schwinger Effect

B field: QFT analogue of Zeeman effect
E field: QFT analogue of Stark effect
$B^{2} \rightarrow-E^{2}$: series becomes non-alternating
Borel summation $\Rightarrow \operatorname{Im} S=\frac{e^{2} E^{2}}{8 \pi^{3}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \exp \left[-\frac{k m^{2} \pi}{e E}\right]$
Schwinger effect:

WKB tunneling from Dirac sea

$$
\begin{gathered}
2 e E \frac{\hbar}{m c} \sim 2 m c^{2} \\
\Rightarrow \\
E_{c} \sim \frac{m^{2} c^{3}}{e \hbar} \approx 10^{16} \mathrm{~V} / \mathrm{cm}
\end{gathered}
$$

$\operatorname{Im} S \rightarrow$ physical pair production rate

- Euler-Heisenberg series must be divergent

QED/QCD effective action and the "Schwinger effect"

- formal definition:

$$
\Gamma[A]=\ln \operatorname{det}(i \not D+m) \quad D_{\mu}=\partial_{\mu}-i \frac{e}{\hbar c} A_{\mu}
$$

- vacuum persistence amplitude

$$
\left\langle O_{\text {out }} \mid O_{\text {in }}\right\rangle \equiv \exp \left(\frac{i}{\hbar} \Gamma[A]\right)=\exp \left(\frac{i}{\hbar}\{\operatorname{Re}(\Gamma)+i \operatorname{Im}(\Gamma)\}\right)
$$

- encodes nonlinear properties of QED/QCD vacuum
- vacuum persistence probability

$$
\left|\left\langle O_{\text {out }} \mid O_{\text {in }}\right\rangle\right|^{2}=\exp \left(-\frac{2}{\hbar} \operatorname{Im}(\Gamma)\right) \approx 1-\frac{2}{\hbar} \operatorname{Im}(\Gamma)
$$

- probability of vacuum pair production $\approx \frac{2}{\hbar} \operatorname{Im}(\Gamma)$
- cf. Borel summation of perturbative series, \& instantons

Schwinger Effect: Beyond Constant Background Fields

- constant field

- sinusoidal or single-pulse

- envelope pulse with sub-cycle structure; carrier-phase effect
- chirped pulse; Gaussian beam, ...
- envelopes \& beyond \Rightarrow complex instantons (saddles)
- physics: optimization and quantum control

Keldysh Approach in QED

- Schwinger effect in $E(t)=\mathcal{E} \cos (\omega t)$
- adiabaticity parameter: $\gamma \equiv \frac{m c \omega}{e \mathcal{E}}$
- $\mathrm{WKB} \quad \Rightarrow \quad P_{\mathrm{QED}} \sim \exp \left[-\pi \frac{m^{2} c^{3}}{e \hbar \mathcal{E}} g(\gamma)\right]$

$$
P_{\mathrm{QED}} \sim\left\{\begin{array}{lll}
\exp \left[-\pi \frac{m^{2} c^{3}}{e \hbar \mathcal{E}}\right] & , & \gamma \ll 1
\end{array}\right. \text { (non-perturbative) }
$$

- semi-classical instanton interpolates between non-perturbative 'tunneling pair-production" and perturbative "multi-photon pair production"

Scattering Picture of Particle Production

Feynman, Nambu, Fock, Brezin/Itzykson, Marinov/Popov, ...

- over-the-barrier scattering: e.g. scalar QED

$$
-\ddot{\phi}-\left(p_{3}-e A_{3}(t)\right)^{2} \phi=\left(m^{2}+p_{\perp}^{2}\right) \phi
$$

- pair production probability: $P \approx \int d^{3} p\left|b_{p}\right|^{2}$
- imaginary time method

$$
\left|b_{p}\right|^{2} \approx \exp \left[-2 \operatorname{Im} \oint d t \sqrt{m^{2}+p_{\perp}^{2}+\left(p_{3}-e A_{3}(t)\right)^{2}}\right]
$$

- more structured $E(t)$ involve quantum interference

Carrier Phase Effect

$$
E(t)=\mathcal{E} \exp \left(-\frac{t^{2}}{\tau^{2}}\right) \cos (\omega t+\varphi)
$$

- sensitivity to carrier phase φ ?

$\varphi=0$

$$
\varphi=\frac{\pi}{2}
$$

Carrier Phase Effect from the Stokes Phenomenon

- interference produces momentum spectrum structure

$$
P \approx 4 \sin ^{2}(\theta) e^{-2 \operatorname{Im} W}
$$

θ : interference phase

- double-slit interference, in time domain, from vacuum
- Ramsey effect: N alternating sign pulses $\Rightarrow N$-slit system
\Rightarrow coherent N^{2} enhancement

Worldline Instantons

To maintain the relativistic invariance we describe a trajectory in space-time by giving the four variables $x_{\mu}(u)$ as functions of some fifth parameter (somewhat analogous to the proper-time) Feynman, 1950

- worldline representation of effective action

$$
\Gamma=-\int d^{4} x \int_{0}^{\infty} \frac{d T}{T} e^{-m^{2} T} \oint_{x} \mathcal{D} x \exp \left[-\int_{0}^{T} d \tau\left(\dot{x}_{\mu}^{2}+A_{\mu} \dot{x}_{\mu}\right)\right]
$$

- double-steepest descents approximation:
- worldline instantons (saddles): $\ddot{x}_{\mu}=F_{\mu \nu}(x) \dot{x}_{\nu}$
- proper-time integral: $\frac{\partial S(T)}{\partial T}=-m^{2}$

$$
\operatorname{Im} \Gamma \approx \sum_{\text {saddles }} e^{-S_{\text {saddle }}\left(m^{2}\right)}
$$

- multiple turning point pairs \Rightarrow complex saddles

Divergence of derivative expansion

- time-dependent E field: $E(t)=E \operatorname{sech}^{2}(t / \tau)$

$$
\Gamma=-\frac{m^{4}}{8 \pi^{3 / 2}} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(m \lambda)^{2 j}} \sum_{k=2}^{\infty}(-1)^{k}\left(\frac{2 E}{m^{2}}\right)^{2 k} \frac{\Gamma(2 k+j) \Gamma(2 k+j-2) \mathcal{B}_{2 k+2 j}}{j!(2 k)!\Gamma\left(2 k+j+\frac{1}{2}\right)}
$$

- Borel sum perturbative expansion: large k (j fixed):

$$
\begin{gathered}
c_{k}^{(j)} \sim 2 \frac{\Gamma\left(2 k+3 j-\frac{1}{2}\right)}{(2 \pi)^{2 j+2 k+2}} \\
\operatorname{Im} \Gamma^{(j)} \sim \exp \left[-\frac{m^{2} \pi}{E}\right] \frac{1}{j!}\left(\frac{m^{4} \pi}{4 \tau^{2} E^{3}}\right)^{j}
\end{gathered}
$$

- resum derivative expansion

$$
\operatorname{Im} \Gamma \sim \exp \left[-\frac{m^{2} \pi}{E}\left(1-\frac{1}{4}\left(\frac{m}{E \tau}\right)^{2}+\ldots\right)\right]
$$

Divergence of derivative expansion

- Borel sum derivative expansion: large j (k fixed):

$$
\begin{gathered}
c_{j}^{(k)} \sim 2^{\frac{9}{2}-2 k} \frac{\Gamma\left(2 j+4 k-\frac{5}{2}\right)}{(2 \pi)^{2 j+2 k}} \\
\operatorname{Im} \Gamma^{(k)} \sim \frac{\left(2 \pi E \tau^{2}\right)^{2 k}}{(2 k)!} e^{-2 \pi m \tau}
\end{gathered}
$$

- resum perturbative expansion:

$$
\operatorname{Im} \Gamma \sim \exp \left[-2 \pi m \tau\left(1-\frac{E \tau}{m}+\ldots\right)\right]
$$

- compare:

$$
\operatorname{Im} \Gamma \sim \exp \left[-\frac{m^{2} \pi}{E}\left(1-\frac{1}{4}\left(\frac{m}{E \tau}\right)^{2}+\ldots\right)\right]
$$

- different limits of full: $\operatorname{Im} \Gamma \sim \exp \left[-\frac{m^{2} \pi}{E} g\left(\frac{m}{E \tau}\right)\right]$
- derivative expansion must be divergent

Lecture 2

- uniform WKB and some magic
- resurgence from all-orders steepest descents
- towards a path integral interpretation of resurgence
- large N
- connecting weak and strong coupling
- complex saddles and quantum interference

Resurgence: recall from lecture 1

- what does a Minkowski path integral mean?

$$
\int \mathcal{D} A \exp \left(\frac{i}{\hbar} S[A]\right) \quad \text { versus } \quad \int \mathcal{D} A \exp \left(-\frac{1}{\hbar} S[A]\right)
$$

- perturbation theory is generically asymptotic
- resurgent trans-series

$$
f\left(g^{2}\right)=\sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=1}^{k-1} \underbrace{c_{k, l, p} g^{2 p}}_{\text {perturbative fluctuations }} \underbrace{\left(\exp \left[-\frac{c}{g^{2}}\right]\right)^{k}}_{\text {k-instantons }} \underbrace{\left(\ln \left[\pm \frac{1}{g^{2}}\right]\right)^{l}}_{\text {quasi-zero-modes }}
$$

The Bigger Picture: Decoding the Path Integral

what is the origin of resurgent behavior in QM and QFT ?

to what extent are (all?) multi-instanton effects encoded in perturbation theory? And if so, why?

- QM \& QFT: basic property of all-orders steepest descents integrals
- Lefschetz thimbles: analytic continuation of path integrals

Towards Analytic Continuation of Path Integrals

The shortest path between two truths in the real domain passes through the complex domain

Jacques Hadamard, 1865-1963

All-Orders Steepest Descents: Darboux Theorem

- all-orders steepest descents for contour integrals:

> hyperasymptotics
(Berry/Howls 1991, Howls 1992)

$$
I^{(n)}\left(g^{2}\right)=\int_{C_{n}} d z e^{-\frac{1}{g^{2}} f(z)}=\frac{1}{\sqrt{1 / g^{2}}} e^{-\frac{1}{g^{2}} f_{n}} T^{(n)}\left(g^{2}\right)
$$

- $T^{(n)}\left(g^{2}\right)$: beyond the usual Gaussian approximation
- asymptotic expansion of fluctuations about the saddle n :

$$
T^{(n)}\left(g^{2}\right) \sim \sum_{r=0}^{\infty} T_{r}^{(n)} g^{2 r}
$$

All-Orders Steepest Descents: Darboux Theorem

- universal resurgent relation between different saddles:

$$
T^{(n)}\left(g^{2}\right)=\frac{1}{2 \pi i} \sum_{m}(-1)^{\gamma_{n m}} \int_{0}^{\infty} \frac{d v}{v} \frac{e^{-v}}{1-g^{2} v /\left(F_{n m}\right)} T^{(m)}\left(\frac{F_{n m}}{v}\right)
$$

- exact resurgent relation between fluctuations about $n^{\text {th }}$ saddle and about neighboring saddles m
$T_{r}^{(n)}=\frac{(r-1)!}{2 \pi i} \sum_{m} \frac{(-1)^{\gamma_{n m}}}{\left(F_{n m}\right)^{r}}\left[T_{0}^{(m)}+\frac{F_{n m}}{(r-1)} T_{1}^{(m)}+\frac{\left(F_{n m}\right)^{2}}{(r-1)(r-2)} T_{2}^{(m)}+\ldots\right.$
- universal factorial divergence of fluctuations (Darboux)
- fluctuations about different saddles explicitly related!

All-Orders Steepest Descents: Darboux Theorem

$d=0$ partition function for periodic potential $V(z)=\sin ^{2}(z)$

$$
I\left(g^{2}\right)=\int_{0}^{\pi} d z e^{-\frac{1}{g^{2}} \sin ^{2}(z)}
$$

two saddle points: $z_{0}=0$ and $z_{1}=\frac{\pi}{2}$.

All-Orders Steepest Descents: Darboux Theorem

- large order behavior about saddle z_{0} :

$$
\begin{aligned}
T_{r}^{(0)} & =\frac{\Gamma\left(r+\frac{1}{2}\right)^{2}}{\sqrt{\pi} \Gamma(r+1)} \\
& \sim \frac{(r-1)!}{\sqrt{\pi}}\left(1-\frac{\frac{1}{4}}{(r-1)}+\frac{\frac{9}{32}}{(r-1)(r-2)}-\frac{\frac{75}{128}}{(r-1)(r-2)(r-3)}\right.
\end{aligned}
$$

- low order coefficients about saddle z_{1} :

$$
T^{(1)}\left(g^{2}\right) \sim i \sqrt{\pi}\left(1-\frac{1}{4} g^{2}+\frac{9}{32} g^{4}-\frac{75}{128} g^{6}+\ldots\right)
$$

- fluctuations about the two saddles are explicitly related

Resurgence in Path Integrals: "Functional Darboux Theorem"

could something like this work for path integrals?
"functional Darboux theorem"?

- multi-dimensional case is already non-trivial and interesting Pham (1965); Delabaere/Howls (2002)
- Picard-Lefschetz theory
- do a computation to see what happens ...

Resurgence in (Infinite Dim.) Path Integrals

- periodic potential: $V(x)=\frac{1}{g^{2}} \sin ^{2}(g x)$
- vacuum saddle point

$$
c_{n} \sim n!\left(1-\frac{5}{2} \cdot \frac{1}{n}-\frac{13}{8} \cdot \frac{1}{n(n-1)}-\ldots\right)
$$

- instanton/anti-instanton saddle point:

$$
\operatorname{Im} E \sim \pi e^{-2 \frac{1}{2 g^{2}}}\left(1-\frac{5}{2} \cdot g^{2}-\frac{13}{8} \cdot g^{4}-\ldots\right)
$$

Resurgence in (Infinite Dim.) Path Integrals

- periodic potential: $V(x)=\frac{1}{g^{2}} \sin ^{2}(g x)$
- vacuum saddle point

$$
c_{n} \sim n!\left(1-\frac{5}{2} \cdot \frac{1}{n}-\frac{13}{8} \cdot \frac{1}{n(n-1)}-\ldots\right)
$$

- instanton/anti-instanton saddle point:

$$
\operatorname{Im} E \sim \pi e^{-2 \frac{1}{2 g^{2}}}\left(1-\frac{5}{2} \cdot g^{2}-\frac{13}{8} \cdot g^{4}-\ldots\right)
$$

- double-well potential: $V(x)=x^{2}(1-g x)^{2}$
- vacuum saddle point

$$
c_{n} \sim 3^{n} n!\left(1-\frac{53}{6} \cdot \frac{1}{3} \cdot \frac{1}{n}-\frac{1277}{72} \cdot \frac{1}{3^{2}} \cdot \frac{1}{n(n-1)}-\ldots\right)
$$

- instanton/anti-instanton saddle point:

$$
\operatorname{Im} E \sim \pi e^{-2 \frac{1}{6 g^{2}}}\left(1-\frac{53}{6} \cdot g^{2}-\frac{1277}{72} \cdot g^{4}-\ldots\right)
$$

Resurgence and Hydrodynamics (Heller/Spalinski 2015; Basar/GD, 2015)

- resurgence: generic feature of differential equations
- boost invariant conformal hydrodynamics
- second-order hydrodynamics: $T^{\mu \nu}=\mathcal{E} u^{\mu} u^{\nu}+T_{\perp}^{\mu \nu}$

$$
\begin{aligned}
\tau \frac{d \mathcal{E}}{d \tau} & =-\frac{4}{3} \mathcal{E}+\Phi \\
\tau_{I I} \frac{d \Phi}{d \tau} & =\frac{4}{3} \frac{\eta}{\tau}-\Phi-\frac{4}{3} \frac{\tau_{I I}}{\tau} \Phi-\frac{1}{2} \frac{\lambda_{1}}{\eta^{2}} \Phi^{2}
\end{aligned}
$$

- asymptotic hydro expansion: $\mathcal{E} \sim \frac{1}{\tau^{4 / 3}}\left(1-\frac{2 \eta_{0}}{\tau^{2 / 3}}+\ldots\right)$
- formal series \rightarrow trans-series

$$
\mathcal{E} \sim \mathcal{E}_{\text {pert }}+e^{-S \tau^{2 / 3}} \times(\text { fluc })+e^{-2 S \tau^{2 / 3}} \times(\text { fluc })+\ldots
$$

- non-hydro modes clearly visible in the asymptotic hydro series

Resurgence and Hydrodynamics

- study large-order behavior

$$
c_{0, k} \sim S_{1} \frac{\Gamma(k+\beta)}{2 \pi i S^{k+\beta}}\left(c_{1,0}+\frac{S c_{1,1}}{k+\beta-1}+\frac{S^{2} c_{1,2}}{(k+\beta-1)(k+\beta-2)}+\ldots\right)
$$

- resurgent large-order behavior and Borel structure verified to 4-instanton level
- \Rightarrow trans-series for metric coefficients in AdS
some magic: there is even more resurgent structure ...

Uniform WKB \& Resurgent Trans-series (GD/MÜ:1306.4405, 1401.5202)

$$
-\frac{\hbar^{2}}{2} \frac{d^{2}}{d x^{2}} \psi+V(x) \psi=E \psi
$$

- weak coupling: degenerate harmonic classical vacua \Rightarrow uniform WKB: $\quad \psi(x)=\frac{D_{\nu}\left(\frac{1}{\sqrt{\hbar}} \varphi(x)\right)}{\sqrt{\varphi^{\prime}(x)}}$
- non-perturbative effects: $g^{2} \leftrightarrow \hbar \quad \Rightarrow \quad \exp \left(-\frac{S}{\hbar}\right)$
- trans-series structure follows from exact quantization condition $\rightarrow E(N, \hbar)=$ trans-series
- Zinn-Justin, Voros, Pham, Delabaere, Aoki, Takei, Kawai, Koike, ...

Connecting Perturbative and Non-Perturbative Sector

Zinn-Justin/Jentschura conjecture: generate entire trans-series from just two functions:
(i) perturbative expansion $E=E_{\text {pert }}(\hbar, N)$
(ii) single-instanton fluctuation function $\mathcal{P}_{\text {inst }}(\hbar, N)$
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

$$
E(\hbar, N)=E_{\text {pert }}(\hbar, N) \pm \frac{\hbar}{\sqrt{2 \pi}} \frac{1}{N!}\left(\frac{32}{\hbar}\right)^{N+\frac{1}{2}} e^{-S / \hbar} \mathcal{P}_{\text {inst }}(\hbar, N)+\ldots
$$

Connecting Perturbative and Non-Perturbative Sector

Zinn-Justin/Jentschura conjecture: generate entire trans-series from just two functions:
(i) perturbative expansion $E=E_{\text {pert }}(\hbar, N)$
(ii) single-instanton fluctuation function $\mathcal{P}_{\text {inst }}(\hbar, N)$
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

$$
E(\hbar, N)=E_{\text {pert }}(\hbar, N) \pm \frac{\hbar}{\sqrt{2 \pi}} \frac{1}{N!}\left(\frac{32}{\hbar}\right)^{N+\frac{1}{2}} e^{-S / \hbar} \mathcal{P}_{\text {inst }}(\hbar, N)+\ldots
$$

in fact ... (GD, Ünsal, 1306.4405, 1401.5202) fluctuation factor:
$\mathcal{P}_{\text {inst }}(\hbar, N)=\frac{\partial E_{\text {pert }}}{\partial N} \exp \left[S \int_{0}^{\hbar} \frac{d \hbar}{\hbar^{3}}\left(\frac{\partial E_{\text {pert }}(\hbar, N)}{\partial N}-\hbar+\frac{\left(N+\frac{1}{2}\right) \hbar^{2}}{S}\right)\right]$
\Rightarrow perturbation theory $E_{\text {pert }}(\hbar, N)$ encodes everything !

Resurgence at work

- fluctuations about \mathcal{I} (or $\overline{\mathcal{I}}$) saddle are determined by those about the vacuum saddle, to all fluctuation orders
- "QFT computation": 3-loop fluctuation about \mathcal{I} for double-well and Sine-Gordon:

Escobar-Ruiz/Shuryak/Turbiner 1501.03993, 1505.05115
DW : $\quad e^{-\frac{S_{0}}{\hbar}}\left[1-\frac{71}{72} \hbar-0.607535 \hbar^{2}-\ldots\right]$

Resurgence at work

- fluctuations about \mathcal{I} (or $\overline{\mathcal{I}}$) saddle are determined by those about the vacuum saddle, to all fluctuation orders
- "QFT computation": 3-loop fluctuation about \mathcal{I} for double-well and Sine-Gordon:

Escobar-Ruiz/Shuryak/Turbiner 1501.03993, 1505.05115

$$
\begin{aligned}
& \mathrm{DW}: \quad e^{-\frac{S_{0}}{\hbar}}\left[1-\frac{71}{72} \hbar-0.607535 \hbar^{2}-\ldots\right] \\
& \text { resurgence }: e^{-\frac{S_{0}}{\hbar}}\left[1+\frac{1}{72} \hbar\left(-102 N^{2}-174 N-71\right)\right. \\
& \left.+\frac{1}{10368} \hbar^{2}\left(10404 N^{4}+17496 N^{3}-2112 N^{2}-14172 N-6299\right)+\ldots\right]
\end{aligned}
$$

- known for all N and to essentially any loop order, directly from perturbation theory!
- diagramatically mysterious

Connecting Perturbative and Non-Perturbative Sector

all orders of multi-instanton trans-series are encoded in perturbation theory of fluctuations about perturbative vacuum

Analytic Continuation of Path Integrals: Lefschetz Thimbles

$$
\int \mathcal{D} A e^{-\frac{1}{g^{2}} S[A]}=\sum_{\text {thimbles } k} \mathcal{N}_{k} e^{-\frac{i}{g^{2}} S_{\mathrm{imag}}\left[A_{k}\right]} \int_{\Gamma_{k}} \mathcal{D} A e^{-\frac{1}{g^{2}} S_{\text {real }}[A]}
$$

Lefschetz thimble $=$ "functional steepest descents contour" remaining path integral has real measure:
(i) Monte Carlo
(ii) semiclassical expansion
(iii) exact resurgent analysis

Analytic Continuation of Path Integrals: Lefschetz Thimbles

$$
\int \mathcal{D} A e^{-\frac{1}{g^{2}} S[A]}=\sum_{\text {thimbles } k} \mathcal{N}_{k} e^{-\frac{i}{g^{2}} S_{\text {imag }}\left[A_{k}\right]} \int_{\Gamma_{k}} \mathcal{D} A e^{-\frac{1}{g^{2}} S_{\text {real }}[A]}
$$

Lefschetz thimble = "functional steepest descents contour" remaining path integral has real measure:
(i) Monte Carlo
(ii) semiclassical expansion
(iii) exact resurgent analysis
resurgence: asymptotic expansions about different saddles are closely related
requires a deeper understanding of complex configurations and analytic continuation of path integrals ...

Stokes phenomenon: intersection numbers \mathcal{N}_{k} can change with phase of parameters

Thimbles from Gradient Flow

gradient flow to generate steepest descent thimble:

$$
\frac{\partial}{\partial \tau} A(x ; \tau)=-\overline{\frac{\delta S}{\delta A(x ; \tau)}}
$$

- keeps $\operatorname{Im}[S]$ constant, and $\operatorname{Re}[S]$ is monotonic

$$
\begin{gathered}
\frac{\partial}{\partial \tau}\left(\frac{S-\bar{S}}{2 i}\right)=-\frac{1}{2 i} \int\left(\frac{\delta S}{\delta A} \frac{\partial A}{\partial \tau}-\frac{\overline{\delta S}}{\delta A} \frac{\overline{\partial A}}{\partial \tau}\right)=0 \\
\frac{\partial}{\partial \tau}\left(\frac{S+\bar{S}}{2}\right)=-\int\left|\frac{\delta S}{\delta A}\right|^{2}
\end{gathered}
$$

- Chern-Simons theory (Witten 2001)
- comparison with complex Langevin (Aarts 2013, ...)
- lattice (Tokyo/RIKEN, Aurora, 2013): Bose-gas \checkmark

Thimbles and Gradient Flow: an example

PHYSICAL REVIEW D 88, 051501(R) (2013)

Monte Carlo simulations on the Lefschetz thimble: Taming the sign problem

Marco Cristoforetti, ${ }^{1,2}$ Francesco Di Renzo, ${ }^{3}$ Abhishek Mukherjee, ${ }^{1,2}$ and Luigi Scorzato ${ }^{1,2}$
${ }^{1} E C T * / F B K$, strada delle tabarelle 286, 38123 Trento, Italy
${ }^{2}$ LISC/FBK, via sommarive 18,38123 Trento, Italy
${ }^{3}$ Università di Parma and INFN gruppo collegato di Parma, Viale G.P. Usberti n.7/A, 43124 Parma, Italy (Received 31 March 2013; published 16 September 2013)

CRISTOFORETTI et al.

FIG. 3. Comparison of the average density $\langle n\rangle$ obtained with the worm algorithm (WA) [22] with the Aurora algorithm (AA) presented here, for the lattice $V=8^{4}$. We thank C. Gattringer and T. Kloiber for providing us their results.

Thimbles, Gradient Flow and Resurgence

$$
Z=\int_{-\infty}^{\infty} d x \exp \left[-\left(\frac{\sigma}{2} x^{2}+\frac{x^{4}}{4}\right)\right]
$$

(Aarts, 2013; GD, Unsal, ...)

- contributing thimbles change with phase of σ
- need all three thimbles when $\operatorname{Re}[\sigma]<0$
- integrals along thimbles are related (resurgence)
- resurgence: preferred unique "field" choice

Ghost Instantons: Analytic Continuation of Path Integrals

$$
\mathcal{Z}\left(g^{2} \mid m\right)=\int \mathcal{D} x e^{-S[x]}=\int \mathcal{D} x e^{-\int d \tau\left(\frac{1}{4} \dot{x}^{2}+\frac{1}{g^{2}} \operatorname{sd}^{2}(g x \mid m)\right)}
$$

- doubly periodic potential: real \& complex instantons

instanton actions:

$$
\begin{gathered}
S_{\mathcal{I}}(m)=\frac{2 \arcsin (\sqrt{m})}{\sqrt{m(1-m)}} \\
S_{\mathcal{G}}(m)=\frac{-2 \arcsin (\sqrt{1-m})}{\sqrt{m(1-m)}}
\end{gathered}
$$

Ghost Instantons: Analytic Continuation of Path Integrals

- large order growth of perturbation theory:

$$
a_{n}(m) \sim-\frac{16}{\pi} n!\left(\frac{1}{\left(S_{\mathcal{I} \overline{\mathcal{I}}}(m)\right)^{n+1}}-\frac{(-1)^{n+1}}{\left|S_{\mathcal{G} \overline{\mathcal{G}}}(m)\right|^{n+1}}\right)
$$

without ghost instantons

with ghost instantons

- complex instantons directly affect perturbation theory, even though they are not in the original path integral measure

Non-perturbative Physics Without Instantons

- $O(N) \&$ principal chiral model have no instantons !
- Yang-Mills, $\mathbb{C} \mathbb{P}^{N-1}, O(N)$, principal chiral model, ... all have non-BPS solutions with finite action
(Din \& Zakrzewski, 1980; Uhlenbeck 1985; Sibner, Sibner, Uhlenbeck, 1989)
- "unstable": negative modes of fluctuation operator
- what do these mean physically ?
resurgence: ambiguous imaginary non-perturbative terms should cancel ambiguous imaginary terms coming from lateral Borel sums of perturbation theory

$$
\int \mathcal{D} A e^{-\frac{1}{g^{2}} S[A]}=\sum_{\text {all saddles }} e^{-\frac{1}{g^{2}} S\left[A_{\text {saddle }}\right]} \times(\text { fluctuations }) \times(\mathrm{qzm})
$$

Connecting weak and strong coupling

main physics question:
does weak coupling analysis contain enough information to extrapolate to strong coupling ?
...even if the degrees of freedom re-organize themselves in a very non-trivial way?
classical asymptotics is clearly not enough: is resurgent asymptotics enough?
phase transitions?

Resurgence and Matrix Models, Topological Strings

Mariño, Schiappa, Weiss: Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings 0711.1954; Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings 0805.3033

- resurgent Borel-Écalle analysis of partition functions etc in matrix models

$$
Z\left(g_{s}, N\right)=\int d U \exp \left[\frac{1}{g_{s}} \operatorname{tr} V(U)\right]
$$

- two variables: g_{s} and N ('t Hooft coupling: $\lambda=g_{s} N$)
- e.g. Gross-Witten-Wadia: $V=U+U^{-1}$
- double-scaling limit: Painlevé II
- 3rd order phase transition at $\lambda=2$: condensation of instantons
- similar in 2d Yang-Mills on Riemann surface

Resurgence in the Gross-Witten-Wadia Model

Buividovich, GD, Valgushev $1512.09021 \rightarrow$ PRL

- unitary matrix model $\equiv 2 \mathrm{~d} U(N)$ lattice gauge theory
- third order phase transition at $\lambda=2$

$$
Z=\int \mathcal{D} U \exp \left[\frac{N}{\lambda} \operatorname{Tr}\left(U+U^{\dagger}\right)\right]
$$

- in terms of eigenvalues $e^{i z_{i}}$ of U

$$
\begin{aligned}
Z & =\prod_{i=1}^{N} \int_{-\pi}^{\pi} d z_{i} e^{-S\left(z_{i}\right)} \\
S\left(z_{i}\right) & \equiv-\frac{2 N}{\lambda} \sum_{i} \cos \left(z_{i}\right)-\sum_{i<j} \ln \sin ^{2}\left(\frac{z_{i}-z_{j}}{2}\right)
\end{aligned}
$$

- at large N search numerically for saddles: $\frac{\partial S}{\partial z_{i}}=0$
- phase transition driven by complex saddles

- eigenvalue tunneling into the complex plane
- weak-coupling: "instanton" is $m=1$ configuration
- has negative mode \Rightarrow resurgent trans-series
- strong-coupling: dominant saddle is $m=2$, complex !

Resurgence in the Gross-Witten-Wadia Model 1512.09021

- weak-coupling "instanton" action from string eqn

$$
S_{I}^{(\text {weak })}=4 / \lambda \sqrt{1-\lambda / 2}-\operatorname{arccosh}((4-\lambda) / \lambda), \quad \lambda<2
$$

- strong-coupling "instanton" action from string eqn

$$
S_{I}^{(\text {strong })}=2 \operatorname{arccosh}(\lambda / 2)-2 \sqrt{1-4 / \lambda^{2}}, \quad \lambda \geq 2
$$

- interpolated by Painlevé II (double-scaling limit)

Resurgence and Localization

(Drukker et al, 1007.3837; Mariño, 1104.0783; Aniceto, Russo, Schiappa, 1410.5834)

- certain protected quantities in especially symmetric QFTs can be reduced to matrix models \Rightarrow resurgent asymptotics
- 3d Chern-Simons on $\mathbb{S}^{3} \rightarrow$ matrix model

$$
Z_{C S}(N, g)=\frac{1}{\operatorname{vol}(U(N))} \int d M \exp \left[-\frac{1}{g} \operatorname{tr}\left(\frac{1}{2}(\ln M)^{2}\right)\right]
$$

- ABJM: $\mathcal{N}=6$ SUSY CS, $G=U(N)_{k} \times U(N)_{-k}$
$Z_{A B J M}(N, k)=\sum_{\sigma \in S_{N}} \frac{(-1)^{\epsilon(\sigma)}}{N!} \int \prod_{i=1}^{N} \frac{d x_{i}}{2 \pi k} \frac{1}{\prod_{i=1}^{N} 2 \operatorname{ch}\left(\frac{x_{i}}{2}\right) \operatorname{ch}\left(\frac{x_{i}-x_{\sigma(i)}}{2 k}\right)}$
- $\mathcal{N}=4$ SUSY Yang-Mills on \mathbb{S}^{4}

$$
Z_{S Y M}\left(N, g^{2}\right)=\frac{1}{\operatorname{vol}(U(N))} \int d M \exp \left[-\frac{1}{g^{2}} \operatorname{tr} M^{2}\right]
$$

Connecting weak and strong coupling

- often, weak coupling expansions are divergent, but strong-coupling expansions are convergent (generic behavior for special functions)
- e.g. Euler-Heisenberg

$$
\begin{aligned}
\Gamma(B) \sim & -\frac{m^{4}}{8 \pi^{2}} \sum_{n=0}^{\infty} \frac{\mathcal{B}_{2 n+4}}{(2 n+4)(2 n+3)(2 n+2)}\left(\frac{2 e B}{m^{2}}\right)^{2 n+4} \\
\Gamma(B)= & \frac{(e B)^{2}}{2 \pi^{2}}\left\{-\frac{1}{12}+\zeta^{\prime}(-1)-\frac{m^{2}}{4 e B}+\frac{3}{4}\left(\frac{m^{2}}{2 e B}\right)^{2}-\frac{m^{2}}{4 e B} \ln (2 \pi)\right. \\
& +\left[-\frac{1}{12}+\frac{m^{2}}{4 e B}-\frac{1}{2}\left(\frac{m^{2}}{2 e B}\right)^{2}\right] \ln \left(\frac{m^{2}}{2 e B}\right)-\frac{\gamma}{2}\left(\frac{m^{2}}{2 e B}\right)^{2} \\
& \left.+\frac{m^{2}}{2 e B}\left(1-\ln \left(\frac{m^{2}}{2 e B}\right)\right)+\sum_{n=2}^{\infty} \frac{(-1)^{n} \zeta(n)}{n(n+1)}\left(\frac{m^{2}}{2 e B}\right)^{n+1}\right\}
\end{aligned}
$$

Resurgence in $\mathcal{N}=2$ and $\mathcal{N}=2^{*}$ Theories
(Başar, GD, 1501.05671)

$$
-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d x^{2}}+\cos (x) \psi=u \psi
$$

\longleftarrow electric sector (convergent)
\longleftarrow magnetic sector

- energy: $u=u(N, \hbar)$; 't Hooft coupling: $\lambda \equiv N \hbar$
- very different physics for $\lambda \gg 1, \lambda \sim 1, \lambda \ll 1$
- Mathieu \& Lamé encode Nekrasov twisted superpotential

Resurgence of $\mathcal{N}=2$ SUSY SU(2)

- moduli parameter: $u=\left\langle\operatorname{tr} \Phi^{2}\right\rangle$
- electric: $u \gg 1 ; \quad$ magnetic: $u \sim 1 ;$ dyonic: $u \sim-1$
- $a=\langle$ scalar $\rangle, \quad a_{D}=\langle$ dual scalar $\rangle, \quad a_{D}=\frac{\partial \mathcal{W}}{\partial a}$
- Nekrasov twisted superpotential $\mathcal{W}(a, \hbar, \Lambda)$:
- Mathieu equation:
(Mironov/Morozov)

$$
-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d x^{2}}+\Lambda^{2} \cos (x) \psi=u \psi \quad, \quad a \equiv \frac{N \hbar}{2}
$$

- Matone relation:

$$
u(a, \hbar)=\frac{i \pi}{2} \Lambda \frac{\partial \mathcal{W}(a, \hbar, \Lambda)}{\partial \Lambda}-\frac{\hbar^{2}}{48}
$$

Mathieu Equation Spectrum: (\hbar plays role of $\left.g^{2}\right)$

$$
-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d x^{2}}+\cos (x) \psi=u \psi
$$

Mathieu Equation Spectrum

$$
-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d x^{2}}+\cos (x) \psi=u \psi
$$

- small N : divergent, non-Borel-summable \rightarrow trans-series

$$
\begin{aligned}
u(N, \hbar) \sim & -1+\hbar\left[N+\frac{1}{2}\right]-\frac{\hbar^{2}}{16}\left[\left(N+\frac{1}{2}\right)^{2}+\frac{1}{4}\right] \\
& -\frac{\hbar^{3}}{16^{2}}\left[\left(N+\frac{1}{2}\right)^{3}+\frac{3}{4}\left(N+\frac{1}{2}\right)\right]-\ldots
\end{aligned}
$$

- large N : convergent expansion: \longrightarrow ?? trans-series ??

$$
\begin{gathered}
u(N, \hbar) \sim \frac{\hbar^{2}}{8}\left(N^{2}+\frac{1}{2\left(N^{2}-1\right)}\left(\frac{2}{\hbar}\right)^{4}+\frac{5 N^{2}+7}{32\left(N^{2}-1\right)^{3}\left(N^{2}-4\right)}\left(\frac{2}{\hbar}\right)^{8}\right. \\
\left.+\frac{9 N^{4}+58 N^{2}+29}{64\left(N^{2}-1\right)^{5}\left(N^{2}-4\right)\left(N^{2}-9\right)}\left(\frac{2}{\hbar}\right)^{12}+\ldots\right)
\end{gathered}
$$

Resurgence of $\mathcal{N}=2$ SUSY SU(2)

(Başar, GD, 1501.05671)

- $N \hbar \ll 1$, deep inside wells: resurgent trans-series
$u^{(\pm)}(N, \hbar) \sim \sum_{n=0}^{\infty} c_{n}(N) \hbar^{n} \pm \frac{32}{\sqrt{\pi} N!}\left(\frac{32}{\hbar}\right)^{N-1 / 2} e^{-\frac{8}{\hbar}} \sum_{n=0}^{\infty} d_{n}(N) \hbar^{n}+\ldots$
- Borel poles at two-instanton location
- $N \hbar \gg 1$, far above barrier: convergent series
$u^{(\pm)}(N, \hbar)=\frac{\hbar^{2} N^{2}}{8} \sum_{n=0}^{N-1} \frac{\alpha_{n}(N)}{\hbar^{4 n}} \pm \frac{\hbar^{2}}{8} \frac{\left(\frac{2}{\hbar}\right)^{2 N}}{\left(2^{N-1}(N-1)!\right)^{2}} \sum_{n=0}^{N-1} \frac{\beta_{n}(N)}{\hbar^{4 n}}+\ldots$
(Basar, GD, Ünsal, 2015)
- coefficients have poles at O (two-(complex)-instanton)
- $N \hbar \sim \frac{8}{\pi}$, near barrier top: "instanton condensation"

$$
u^{(\pm)}(N, \hbar) \sim 1 \pm \frac{\pi}{16} \hbar+O\left(\hbar^{2}\right)
$$

Conclusions

- Resurgence systematically unifies perturbative and non-perturbative analysis, via trans-series
- trans-series 'encode' analytic continuation information
- expansions about different saddles are intimately related
- there is extra un-tapped 'magic' in perturbation theory
- matrix models, large N, strings, SUSY QFT
- IR renormalon puzzle in asymptotically free QFT
- multi-instanton physics from perturbation theory
- $\mathcal{N}=2$ and $\mathcal{N}=2^{*}$ SUSY gauge theory
- fundamental property of steepest descents
- moral: go complex and consider all saddles, not just minima

A Few References: books

- J.C. Le Guillou and J. Zinn-Justin (Eds.), Large-Order Behaviour of Perturbation Theory
- C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers
- R. B. Dingle, Asymptotic expansions: their derivation and interpretation
- O. Costin, Asymptotics and Borel Summability
- R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals
- E. Delabaere, "Introduction to the Ecalle theory", In Computer Algebra and Differential Equations 193, 59 (1994), London Math. Soc. Lecture Note Series

A Few References: papers

- E. B. Bogomolnyi, "Calculation of instanton-anti-instanton contributions in quantum mechanics", Phys. Lett. B 91, 431 (1980).
- M. V. Berry and C. J. Howls, "Hyperasymptotics for integrals with saddles", Proc. R. Soc. A 434, 657 (1991)
- E. Delabaere and F. Pham, "Resurgent methods in semi-classical asymptotics", Ann. Inst. H. Poincaré 71, 1 (1999)
- M. Mariño, R. Schiappa and M. Weiss, "Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings," Commun. Num. Theor. Phys. 2, 349 (2008) arXiv:0711.1954
- M. Mariño, "Lectures on non-perturbative effects in large N gauge theories, matrix models and strings," arXiv:1206.6272
- I. Aniceto, R. Schiappa and M. Vonk, "The Resurgence of Instantons in String Theory," Commun. Num. Theor. Phys. 6, 339 (2012), arXiv:1106.5922

A Few References: papers

- E. Witten, "Analytic Continuation Of Chern-Simons Theory," arXiv:1001.2933
- I. Aniceto, J. G. Russo and R. Schiappa, "Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories", arXiv:1410.5834
- G. V. Dunne \& M. Ünsal, "Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model," JHEP 1211, 170 (2012), and arXiv:1210.2423
- G. V. Dunne \& M. Ünsal, "Generating Non-perturbative Physics from Perturbation Theory," arXiv:1306.4405; "Uniform WKB, Multi-instantons, and Resurgent Trans-Series," arXiv:1401.5202.
- G. Basar, G. V. Dunne and M. Unsal, "Resurgence theory, ghost-instantons, and analytic continuation of path integrals," JHEP 1310, 041 (2013), arXiv:1308.1108
- I. Aniceto and R. Schiappa, "Nonperturbative Ambiguities and the Reality of Resurgent Transseries," Commun. Math. Phys. 335, no. 1, 183 (2015) arXiv:1308.1115.

A Few References: papers

- G. Basar \& G. V. Dunne, "Resurgence and the Nekrasov-Shatashvili Limit: Connecting Weak and Strong Coupling in the Mathieu and Lamé Systems", arXiv:1501.05671
- A. Cherman, D. Dorigoni, G. V. Dunne \& M. Ünsal, "Resurgence in QFT: Nonperturbative Effects in the Principal Chiral Model", Phys. Rev. Lett. 112, 021601 (2014), arXiv:1308.0127
- G. Basar and G. V. Dunne, "Hydrodynamics, resurgence, and transasymptotics," arXiv:1509.05046.
- A. Behtash, G. V. Dunne, T. Schaefer, T. Sulejmanpasic and M. Ünsal, "Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence," arXiv:1510.03435.
- G. V. Dunne and M. Ünsal, "What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles", arXiv:1511.05977.
- P. V. Buividovich, G. V. Dunne and S. N. Valgushev, "Complex Saddles in Two-dimensional Gauge Theory," arXiv:1512.09021.

